
A Hierarchical Framework for Solving the Constrained Multiple Depot
Traveling Salesman Problem

Ruixiao Yang and Chuchu Fan

Abstract— The Multiple Depot Traveling salesman Problem
(MDTSP) is a variant of the well known NP-hard Traveling
Salesman Problem (TSP) with more than one salesmen to
collaboratively visit all destinations, which widely encounters
in task or mission planning in multi-agent robotic systems.
Traditional MDTSP does not consider constraints such as
limited battery level or inter-agent conflicts that are widely
seen in practical problem, leading to the high risk of gener-
ating infeasible or unsafe solution in practice. In this work,
we incorporate realistic constraints on energy and resource
consumption into MDTSP to form the Constrained MDTSP
(CMDTSP). We design a novel hierarchical framework to solve
such CMDTSP with provide high-quality solution and low com-
putational complexity, addressing the problem of lacking good
heuristics when solving CMDTSP. The framework decomposes
a given large CMDTSP problem into manageable sub-problems,
each handled by a salesman individually via an existing solver
for Traveling Salesman Problem (TSP) and heuristic search
to generate tours. The proposed solutions are then aggregated
and processed through a relatively small Mixed-Integer Linear
Program (MILP) to form a feasible solution that meets the
constraints. Compared with exact method, We reduce the
number of real variables in MILP from forth order of cities
to linear and the number of integer variables from quadratic
to linear. We demonstrate the advantages of our framework
on solution quality and running time over existing methods
by experiments on both real road maps as well as synthetic
datasets. Our framework gives a mean optimality gap 12.48%
on small dataset, and a 5.22%∼14.84% solution quality increase
with more than 79.8x speedup over the best baseline on
large dataset where exact method times out. The code, proof,
and MILP formulation are publicly available at https://mit-
realm.github.io/CMDTSP/

I. INTRODUCTION

To optimize robots in handling multiple tasks, a crucial
step is to plan the mission with the optimal order of tasks.
The Traveling Salesman Problem (TSP), a well-studied prob-
lem in a wide range of fields including computer science,
operation research, and optimization theory, asks to find
the shortest route for a salesman to visit a set of cities
(or destinations) exactly once and return to the start point.
In the multi-agent robot system, the Multiple Depot TSP
(MDTSP) [1] is a corresponding variant of the classic TSP
that adds multiple depots, where multiple salesmen start, to
collaboratively visit a set of cities. Such a problem in various
real-world robotics applications such as logistics scheduling,
warehouse robots, healthcare routing for metropolitan cities,
and unmanned aerial vehicles (UAVs) [2], [3], [4].

The authors are with the Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
ruixiao@mit.edu; chuchu@mit.edu).

The optimal routes given by the solution of an uncon-
strained MDTSP might not be realizable in practice due to
the energy consumption and limited energy capability of each
robot (also called salesmen henceforth) in mission planning
tasks. For example, in the task of assigning drones or electric
vehicles to deliver items from different warehouses, visiting
charging stations must be taken into account due to the
limited battery capacity. The charging stations also have
limited capabilities in terms of the number of agents they
can host and the total energy resource they can provide. To
better model such real-world requirements, we define a new
class of MDTSP called Constrained MDTSP (CMDTSP) by
introducing the energy and resource constraints into MDTSP.
In CMDTSP, each salesman starts with a finite energy level
and consumes energy proportional to the traveled distance.
In addition, we introduce a new set of nodes, called stations,
that each salesman can visit to replenish their energy level.
The CMDTSP asks for the shortest set of routes for m
salesmen that start from different depots, jointly visit a set of
cities, and return to the depots where they start. Furthermore,
each station has a limited energy supply, hence, there is an
additional constraint on the number of salesmen each station
can cater to. It is worth noting that CMDTSP is also (NP-
)hard as any TSP can be trivially reduced to a CMDTSP
with m = 1 and zero energy consumption rate.

Literature on MDTSP is very scarce, and existing works
on related problems either use metaheuristic algorithms such
as Ant-Colony Optimization-based methods [5], [6] and
Simulated Annealing-based methods [7], [8], [9] or directly
solve a Mixed-Integer Linear Programming (MILP) [4], [10],
[11]. While the former methods have large optimality gaps,
the latter methods do not scale to large problems due to the
high computational complexity.

In this paper, we propose a novel hierarchical framework
for solving CMDTSP, providing a balance between solution
quality and computational complexity. We first allocate cities
to salesmen via a heuristic method involving the Minimum
Spanning Tree (MST) of a graph consisting of the cities
and the depots. Then, we use a TSP solver to determine
the visit order of assigned cities for each salesman. Each
salesman then proposes multiple potential feasible routes by
adding charging stations to their routes of cities. Finally, the
proposed solutions are collected and an optimal solution for
each salesman is computed using a MILP-based congestion
control formulation. The number of both integer and real
variables grows linearly to the number of cities in our MILP
instead of quadratic and forth order in the exact method. In
experiments, our framework outperforms selected baselines

https://mit-realm.github.io/CMDTSP/
https://mit-realm.github.io/CMDTSP/

in both solution quality and scalability on hybrid datasets
built from Manhattan and Cambridge road maps as well
as synthetic datasets. We observe a 5.22%∼14.84% tour
length reduction and more than 79.8x speedup against the
best baseline, and a 12.48% mean optimality gap compared
with the exact method. Our framework is capable of solving
large-scale instances with up to 1100 cities where the exact
method times out on 30 cities with the same time limit.

The main contributions of the paper are as follows: (1)
We formulate CMDTSP as a new variant of MDTSP to
model energy consumption and replenishment of salesmen in
the real world; (2) We propose a novel hierarchical pipeline
for solving CMDTSP and show that the overall computa-
tional complexity of the proposed algorithm is much lower
than a pure MILP formulation; (3) We illustrate through
various numerical experiments against multiple baselines on
hybrid and synthetic datasets that the proposed method pro-
duces high-quality solutions while maintaining scalability.

II. RELATED WORK

A. Methods for TSP and Its Variants

Exact methods for TSP and its variants besides brute
force enumeration includes Dynamic Programming [12] and
Mixed-Integer Linear Programming (MILP) [13], [14]. Exist-
ing tools like Gurobi [15] and Concorde [16] optimize MILP
through Branch and Bound (B&B) method and Cutting Plane
Method (CMP) for fast computation. Exact methods are guar-
anteed to find the optimal solution but are computationally
expensive which leads to severe scaling problems.

Approximation and heuristic algorithms are much more
computationally efficient than exact methods but only pro-
vide sub-optimal solutions. Among algorithms with worst-
case guarantee, the Christofides Algorithm [17] was the state-
of-the-art algorithm with approximation ratio 3

2 (defined as
the ratio of the algorithms’ optimal cost and theoretical
optimal cost), which is recently improved to 3

2 −10−36 [18].
The best heuristic algorithm for TSP is the Lin-Kernighan
heuristic (LKH) algorithm [19]. Starting from a TSP tour,
it iteratively removes several edges (2 or 3 are favored
in practice) from the tour and reconnects the remaining
sub-tours to find a tour with a lower cost. Recently, the
neural version of LKH called NeuralLKH is developed and
shows better performance [20]. Metaheuristic algorithms like
Simulated Annealing (SA) are also applicable to solve TSP
and are more flexible to be adapted to its variants.

End-to-End Learning-based methods have recently at-
tracted attention from researchers due to their good per-
formance. The first neural-based approach to solve TSP
applies Hopfield network [21], and is recently improved
on TSP [22]. Another variant of RNN used for TSP is
Pointer Network [23], [24]. Recently, Graph Neural Network
(GNN) has provided an efficient method for TSP since
it learns the combinatorial structure of the graph problem
better by capturing the node properties against its graph
neighbors [25], [26], [27].

None of the existing approaches can be directly applied
to give guaranteed correct results for CMDTSP.

B. CMDTSP-related TSP Variants

Multiple TSP (MTSP) is the basic problem modeling the
multiagent issue, which asks multiple salesmen starting from
the same depot to collaboratively visit a set of cities exactly
once and come back to the depot. Exact algorithms models
the problem into MILP [28], [29] or constraint program-
ming [30], and metaheuristic algorithms includes Genetic
Algorithm (GA) [31], Ant Colony Optimization (ACO) [32],
[33], and Artificial Bee Colony algorithm (ABC) [34], [35].

Electric TSP (ETSP) introduces energy constraints and
charging stations into standard TSP. The problem is first
formally stated by [36], which also proposed the exact MILP
formulation. Previous research on energy constraints came
together with a time window, known as Electric Traveling
Salesman Problem with Time Windows (ETSPTW) [37]
which is claimed to be easier by [36]. Our work is a mul-
tiagent variant of the ETSP problem, where we provide an
exact MILP formulation and a scalable hierarchical solution.

III. PROBLEM FORMULATION

The CMDTSP is a variant of the TSP problem with
multiple levels of constraints. The problem asks to find
the shortest tours for a group of salesmen to visit a set
of cities (destinations) so each city is visited exactly once
while satisfying the following constraints, 1) the salesman
consumes energy proportional to the distance they travel and
can raise their energy at specific locations called stations; 2)
The salesmen cannot run out of energy, and 3) Each station
can only serve a limited number of salesmen due to the
limited resources. To clarify, we use the term city aligning
with the expression in the TSP, which can refer to arbitrary
targets or destinations in robotic tasks.

Formally, the problem is defined on a complete undirected
graph G = (V,E) :=G (V), where V is the set of vertices. The
vertex set V is partitioned into the union of three sets D, C,
and S, where D= {d1,d2, · · · ,dm} is the set of m depots (i.e.,
starting and ending locations of the salesmen’s tours), C =
{c1,c2, · · · ,cn} is the set of n cities, and S = {s1,s2, · · · ,sl} is
the set of l stations. Each edge (i, j)∈ E is associated with a
weight c(i, j)≥ 0 which represents the cost of traveling from
vertex i to vertex j. The energy and resource constraints are
encoded as an energy capacity ei and an energy consumption
ki per unit distance for each salesman i, and a resource upper
bound rs for each station s∈ S. The cost of a tour is typically
defined as the sum of the costs of the edges in the tour, and
the total cost is defined as the sum of the costs of all tours.
This cost can represent distance, time, or any other measure
that is relevant to the problem. We also assume that each
salesman’s energy level is fully replenished upon visiting
any station.

Problem 1: (CMDTSP) Given a complete undirected
graph G = (V,E) where V = D ∪C ∪ S and m salesmen
starting from different depots in D, find a set of m tours
{ti}|D|i=1, one for each salesman, such that: (1) each tour starts
from and ends to the same depot; (2) each city in C is visited
exactly once; (3) every salesman has a non-negative energy

+
−

 Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB (http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

Depots
Cities
Stations
Roads
Solution

Fig. 1. A solution of CMDTSP in Manhattan: salesmen start from depots
to collaboratively visit all cities and always keep their energy above zero.

Algorithm 1 Framework for solving CMDTSP
1: T,P, Solution = /0
2: l = 0
3: {Ci}|D|i=1 = Partition(C; D)

. Assign the cities to each salesman
4: for i ∈ {1,2, · · · ,m} do
5: Gi = G (Ci∪{di})

. Form a complete graph of Ci∪{di}
6: ti = TSP(Gi) . Find the TSP solution of graph Gi
7: for (u,v) ∈ ti do
8: G ′i = G ({u,v}∪S)

. Form a complete graph of {u,v}∪S
9: Pi(u,v) = k-shortest-path(u,v; G ′i ; k)

. Find the top-k shortest paths from u to v
10: end for
11: end for
12: P = ∪|D|i=1Pi
13: Solution = CongestionControl(P)

. Form a solution satisfying all constraints from P
14: return Solution

level during the tour; (4) station si is visited at most rsi times
in total for i = 1,2, · · · , l; and (5) the total cost is minimized.

It is also a general version of a more commonly studied
sub-problem, Multiple Depots TSP (MDTSP) [2], [38].

IV. METHODOLOGY

Similar to classical TSP problems, CMDTSP can be
formulated as a mixed-integer linear program (MILP) (see
website). However, the complexity of such MILP scales
exponentially to the fourth order of cities, third order of
depots, and second order of stations and therefore, does not
scale well for the problems with a large number of cities.

Algorithm 2 Assign Cities to Salesmen
Input: City set C, depot set D

1: G = G (C∪D) . Form a complete graph of C∪D
2: T = MST(G) . Compute a minimum spanning tree
3: Compute minimum weight functions f ,g

. Using Eq. (1), (2)
4: ∪|D|i=1Ti = Part(T, f ,g) . Partition tree T based on f ,g
5: return {C∩Ti}|D|i=1

The intuition of our framework is straightforward: break
down a CMDTSP into smaller subproblems to reduce the size
of MILP, which is the bottleneck for scaling up. We propose
a novel hierarchical framework that utilizes a heuristic and
smaller MILP. The cities are first assigned to each salesman
to form standard TSPs. Then, each TSP is solved for each
salesman i without the energy constraints to return a potential
tour ti. For each pair of consecutive cities (u,v) in ti, we
suggest the top-k shortest paths that get to v from u by
traveling through a sequence of stations to maintain a positive
energy level. Finally, we collect all paths proposed by all
salesmen to find a feasible tour for each salesman so that all
the constraints including positive energy level and limited
station resources are satisfied. The framework is shown in
Algorithm 1 and an illustrative example of route planning in
Manhattan is shown in Figure 1.

A. City assignment

We first introduce Algorithm 2 to assign the cities to every
salesman. First, we construct a complete graph G = G (V)
with V = D ∪C of all depots D and cities C and find
its minimum spanning tree T (rt) rooted at some node
rt ∈ D∪C. Then, we split T (rt) into m components Ti
by deleting m− 1 edges to separate every pair of depots
and minimize the total weights of remaining edges using
dynamic programming as explained next. Note that each
resulting partition Ti contains exactly one depot di. Given
a rooted tree T (u) rooted at u of any (sub)tree, we define
two types of partitions T̃ (u) and T̂ (u). The first type of
partition T̃ (u) = ∪m

i=1Ti(u) is a partition of T (u) such that
each connected component contains exactly one depot. If
T (u) contains no depot, then such a partition does not exist.
The second type of partition T̂ (u) = ∪iT ′i (u) is a partition
of T (u) such that all depots and the root u are separated,
i.e., each connected component either contains exactly one
depot or the root. For a depot u as a root node, T̂ (u) does
not exist. By definition, T̃ (u) = T̂ (u) when u ∈ D.

Next, define f : V → R such that f (u) represents the
minimum total edge weights of T̃ (u) and g : V →R such that
g(u) represents the minimum total edge weights of T̂ (u). If
a partition does not exist, we set the corresponding value of
f or g to be +∞, i.e., f (u) =+∞ for T (u) contains no depot
and g(u) = +∞ if u is a depot. Thus, functions f and g are
computed by the following rules:

f (u)

https://mit-realm.github.io/CMDTSP/

=

min

v∈H(u)

{
f (v)+ c(u,v)+

∑
v′∈H(u)\{v}

min{ f (v′),g(v′)+ c(u,v′)}
}
, u ∈C,

∑
v∈H(u)

min{ f (v),g(v)+ c(u,v)}, u ∈ D,

(1)

g(u) =

 ∑
v∈H(u)

min{ f (v),g(v)+ c(u,v)}, u ∈C,

+∞, u ∈ D.
(2)

We offer brief insights here and provide the details of the
derivation on website. For a partition of type T̃ or T̂ , every
partition on a subtree is also of these types. Computing
weights for the partition of the tree T (u) involves computing
weights of partition for all u’s children, plus the optimal way
of connection to form a valid partition. Using this, we can
obtain (1)-(2).

After computing f (rt), we can construct the partition
T̃ (rt) using the functions f and g by the following rules. If
u∈C with the partition of type T̃ , then we can find a v∈H(u)
such that u choose to update f (u) in Eq. (1), which means
v is partitioned by T̃ and connects to u. Each of the rest of
the children v′ 6= v is partitioned by T̃ and does not connect
to u if f (v′) < g(v′)+ c(u,v′). If u ∈ C with partition type
T̂ or u ∈ D with partition type T̃ (u ∈ D only have partition
type T̃ as f (u) < g(u) = +∞), each v ∈ H(u) is partitioned
by T̃ and does not connect to u if f (v)< g(v)+c(u,v). This
construction is carried from root rt of the tree T (rt) to
the leaves, leading to the partition T̃ (rt). Now we show the
correctness and optimality of Alg. 2’s output.

Theorem 1: Given a graph G = G (V) with V = D∪C
and an edge-weight function c, the partition T̃ (rt) re-
covered from value function assignment in (1)-(2) parti-
tions the minimum spanning tree T of G into m con-
nected components {Ti}m

i=1 such that di ∈ Ti, and minimizes
the total edge weights in the connected components, i.e.,
∑
|D|
i=1 ∑(u,v)∈Ti c(u,v).
Algorithm 2 runs in O(|C∪D|2) and has an approximation

ratio of 2 for MDTSP.
Theorem 2: Algorithm 2 for MDTSP has an approxima-

tion ratio of 2 for nodes on 2D-plane.
Proof: Let G be a graph, M(G) be the corresponding

MST, and C(G) be the corresponding TSP tour. Let CM(G)
be the optimal TSP tour recover from M(G), and ()∗ denote
the optimal solution. Suppose algorithm 2 gives partition
P(G) = ∪Gi while the optimal partition is P∗(G) = ∪G∗i .
Suppose E is the set of edges that are removed in algorithm
2 in M(G). For simplicity, we also use the set to represent
the total edge weights in the set. The algorithm cost is

∑i C
∗(Gi)≤∑i CM(Gi)≤∑i 2M(Gi)≤ 2(M(G)−E).

Since for the optimal partition P∗, there exists a set of edge
E ′ ⊆M(G) to reconnect the subgraphs. By algorithm 2, E ≥
E ′. Using this, we obtain

∑i C
∗(G∗i)≥∑i M(G∗i)≥M(G)−E ′ ≥M(G)−E.

Hence, we can conclude ∑i C∗(Gi)≤ 2∑i C∗(G∗i).

After assigning cities to salesmen, we form graphs for
each depot with corresponding cities and solve TSPs on the
graph to determine the order of visits for each salesman. This
is a standard TSP and any off-the-shelf TSP solver can be
plugged in here. Since the solver is called repeatedly, once
for each salesman, and the routes have no restriction on the
size, it is desirable to use a TSP solver that is both fast and
scalable. In this work, we use the state-of-the-art heuristic
solver LKH-3 [39] which efficiently produces solutions with
a very small optimality gap and has good scalability.

Next, given a tour of cities, each salesman proposes k paths
between each edge along its tour by applying the shortest-
path finding algorithm on the graph consisting of the edge
and the stations. That is, each salesman i with a tour ti
proposes k× |ti| paths in total, where |ti| is the length of
the tour ti. Hence, the total number of paths is ∑

|D|
i=1 k|ti| =

k(|C|+ |D|) paths so that there are ∏
|D|
i=1 ∏

|ti|
j=1 k = k|C|+|D|

potential solutions. The next step is to solve the congestion
control problem to find a solution for each salesman that
satisfies all the energy constraints.

B. Congestion control

We say that congestion happens at station s when more
than rs salesmen want to visit the station. The congestion
control problem asks to find tours for salesman such that
there is no congestion at any station. To this end, a salesman
i chooses a path out of the k proposed paths for each edge
(u(v),v) in each tour ti to meet the energy constraints for
all the salesmen and the resource constraints for all the
stations. We set up this as an optimization problem to find
the path assignment that minimizes the total edge weights
while satisfying the constraints.

Let γi, j ∈ R+ be the energy level of salesman i at the
j−th node in tour ti and bi, j,h be a binary vector indicating
the stations included in the h-th path pi, j,h proposed by
salesman i for its j-th edge along its tour, i.e. bi, j,h[s] = 1
if the path passes through station s. Let βi, j,h ∈ {0,1} be a
binary variable indicating whether pi, j,h is chosen and ci, j,h
be the corresponding cost. If there is at least one station on
the path, we denote the minimum energy needed to arrive
at the first station from the j-th node as q1,i, j,h and the
maximum energy left after finishing the path (i.e., arriving
at (j+1)-the node) as q2,i, j,h. Thus, for path to be feasible,
the corresponding constraints γi, j ≥ q1,i, j,h and γi, j+1≤ q2,i, j,h
should be satisfied. In the case when a salesman visits a
station between the j−th and (j + 1)-th node, the energy
level γi, j+1 is independent of γi, j because the station charges
the salesman’s energy to its full capacity. On the other hand,
if there is no station on the path, we denote the minimum
energy needed to travel the path pi, j,h by q3,i, j,h. Thus, for
a direct path from j-th to (j + 1)-th node to be feasible,
it is required that γi, j − γi, j+1 ≥ q3,i, j,h. In this case, the
energy level γi, j+1 depends on the previous energy level γi, j.
Additionally, we define q3,(·) = −∞ for paths with stations
and q1,(·) = −∞, q2,(·) = +∞ for paths without stations, so
that the tuple q(·) = (q1,(·),q2,(·),q3,(·)) is well-defined for
each edge. Based on these definitions, the congestion-free

https://mit-realm.github.io/CMDTSP/

tour assignment problem can be posed as:

min
m

∑
i=1

|ti|

∑
j=1

k

∑
h=1

ci, j,h ·βi, j,h, (3a)

s.t. βi, j,h ∈ {0,1}, i ∈ [m], j ∈ [|ti|],h ∈ [k], (3b)
k

∑
h=1

βi, j,h = 1, i ∈ [m], j ∈ [|ti|], (3c)

m

∑
i=1

|ti|

∑
j=1

k

∑
h=1

βi, j,h · pi, j,h[s]≤ rs,s ∈ [l], (3d)

0≤ γi, j, i ∈ [m], j ∈ [|ti|+1], (3e)
k

∑
h=1

βi, j,h ·q1,i, j,h ≤ γi, j, i ∈ [m], j ∈ [|ti|], (3f)

γi, j ≤
k

∑
h=1

βi, j,h ·q2,i, j−1,h, i ∈ [m], j ∈ [2, |ti|+1], (3g)

k

∑
h=1

βi, j,h ·q3,i, j,h ≤ γi, j− γi, j+1, i ∈ [m], j ∈ [|ti|], (3h)

where |ti| refers to the length of salesman i’s tour ti. The
objective function (3a) represents the overall cost of all the
tours that should be minimized. The constraints (3b) and (3c)
encode choosing exactly one path out of k proposed paths
for each edge. Constraint (3d) is the resource constraint for
stations and constraints (3e)-(3h) are the energy constraints
for the salesmen when traveling through the chosen paths.

Now we analyze the complexity of our proposed CMDTSP
solver. Given a graph G = G (V) with |V | = |D∪C∪ S| =
m + n + l and parameter k denoting the number of paths
proposed for each edge, the MILP (3) has nk real variables,
mk + nk integer variables and 5m2 + 5mn + l constraints.
Compared with the naive MILP formulation which has
mn+mn2 +mn2(m+ n+ l)2 real variables, mn2 + n integer
variables, and m(m+n)2(l2 +6m+5n+7l +3) constraints,
our algorithm has better scalability, which is also validated
via experiments presented in the next section.

V. EXPERIMENTS

In this section, we report experiments for validating our
method. In the first part, we compare our method with three
baselines, namely, Ant Colony Optimization (ACO) based
algorithm [41], Hybrid Evolutionary Algorithm (HEA) [42],
and Hybrid Variable Neighborhood Search (HVNS) [43], on
both hybrid data and synthetic data. In the second part, we
compare our method with a naı̈ve MILP formulation for
scalability and quality of the solution. In the third part, we
study the partition component and TSP solver component in
our framework to justify our choices.

Part one experiments were run on a server with one AMD
Ryzen Threadripper 3990X 64-Core Processor and the rest
experiments were run on a desktop with an Intel Core CPU
I5-13600KF and an Nvidia RTX 3080 GPU with 12GB of
RAM. Gurobi 10.0.0 [15] was used as the MILP solver. The
neural-based solver was trained on TSP 50 provided by [26].

As to the hyperparameter setting, we set the iterations of
LKH to 10 and the number of paths proposed per salesman

k = 5. The selection of k is empirical as we notice that in
the experiments, increasing k beyond 5 increases the running
time but does not improve the performance. For baselines,
we adapt the parameters from their papers [41], [42], [43].

A. Comparison with Baselines

Datasets: We present experiments on four datasets consist-
ing of hybrid data and synthetic data. We use the real-world
Manhattan road map from [44] and the Cambridge road map
extracted from planet OSM [45]. For the Manhattan map,
hybrid instances are generated by uniformly sampling depots,
cities, and stations from the map. For the Cambridge map,
stations are uniformly sampled from Bluebikes stations in
2023 [46] and depots and cities are uniformly sampled from
the rest of the map. A synthetic data is adapted from existing
MDVRP benchmarks [40] by randomly turning a fraction of
cities into stations and uniformly sampling a fixed amount
of depots, cities, and stations. The final synthetic dataset is
generated by sampling depots, cities, and stations uniformly
in a unit square. Salesmen are restricted to traveling along
roads in hybrid instances, while can travel freely in the 2D
space in synthetic instances. We generate datasets of two
sizes, with 1000 instances of small size and 100 instances of
large size. Small instances consist of depots |D| = 5, cities
|C|= 30, and stations |S|= 20, while large instances consist
of |D| = 10, |C| = 100, |S| = 20. In all cases, a station is
allowed to be visited no more than r = 2 times. Due to
the different map size, the energy capacity of salesman is
set differently, i.e. 4 in Manhattan, 40 in Cambridge, 4 in
synthetic data from benchmark, 1 in synthetic data.

Metrics: We use tour length, feasibility rates, and running
time as metrics to evaluate a solver for CMDTSP. The tour
length is defined as the sum of path lengths salesmen traveled
in a solution. The feasibility rate is defined as the ratio
of feasible solutions found for instances in a dataset. The
running time is the duration from formatted data being fed
into the solver to the solver outputting the best solution
found for the instance. We report the average tour length
and average running time.

Baselines: We use ACO, HEA, HVNS as baselines. ACO
based algorithm consists of a nearest neighbor partition parts
to divide the multi-depot to single-depot sub-problems and
an ant-colony optimization to seek local optimum. HEA
initializes population by nearest neighbor and generate the
offspring by adding routes with minimum incremental den-
sity from parents iteratively. The solution is enhanced by
applying variable neighborhood search. HEA is originally
designed for MDVRP, so we add the station insertion proce-
dure from ACO baseline to adapt it to CMDTSP. HVNS
initialize the solution by variable neighborhood search in
each iteration and search for the best solution by tabu search.
The three baselines represent the main approaches for related
problems and are state of the arts methods in their categories.

Result: The comparison results are shown in Table I and
Table II. Our method is sufficiently effective to produce the
best solution quality in all test cases. When the problem size
is small, our method performs the second best feasibility rate

(a) (b)

100 0 100
100

0

Depots Cities

(c)

0.0 0.5 1.0
0.0

0.5

1.0
Depots Cities Stations

(d)

Fig. 2. Four Datasets for experiments. (a) The driving road map of Manhattan, New York. (b) The driving road map of Cambridge, Massachusetts (c)
The existing benchmark for MDVRP [40] (d) An example of randomly generated data in the unit square.

TABLE I
RESULTS ON 1000 SMALL INSTANCES OF 5 DEPOTS, 30 CITIES, 20 STATIONS

Manhattan Cambridge MDVRP Benchmark Uniform

Method Length Feas. Time(s) Length Feas. Time(s) Length Feas. Time(s) Length Feas. Time(s)

ACO 32.93 0.95 1.02 395.75 0.92 1.04 907.83 0.84 1.26 7.98 1.00 1.13
HEA 31.65 0.62 21.57 380.12 0.63 21.62 909.78 0.43 14.45 6.93 0.59 17.69

HVNS 28.26 1.00 12.95 338.86 1.00 14.80 843.66 1.00 15.25 6.67 1.00 16.80
Ours 24.96 1.00 1.90 313.45 1.00 1.91 783.06 0.91 2.04 5.68 1.00 1.74

TABLE II
RESULTS ON 100 LARGE INSTANCES OF 10 DEPOTS, 100 CITIES, 20 STATIONS

Manhattan Cambridge MDVRP Benchmark Uniform

Method Length Feas. Time(s) Length Feas. Time(s) Length Feas. Time(s) Length Feas. Time(s)

ACO 65.50 0.34 3.63 881.50 0.14 4.45 2156.11 0.41 4.03 14.27 0.93 4.88
HEA 50.61 0.01 420.62 824.00 0.01 473.21 1931.04 0.09 329.39 13.73 0.17 393.03

HVNS 47.70 0.94 270.19 653.54 0.48 300.75 1642.98 0.67 287.45 9.95 0.99 239.44
Ours 41.74 0.98 2.54 619.43 0.56 3.11 1511.19 0.70 2.32 8.90 1.00 3.00

and running time, and is very close to the best baseline. On
test cases with large problem size, our method out perform
all other baselines in all evaluation metrics, which also shows
the good scalability.

B. Compare with Exact Algorithm

We explore the trade-off made by our approximate frame-
work by comparing with an exact algorithm in solution
quality and running time.

Datasets: To measure the solution quality, we use the
randomly generated 100 instances of |C|= 15, |D|= 3, |S|=
20, and r = 2. To measure the scalability of our framework,
we vary the size of instances with 100 instances per size. The
sizes of problems increase in two ways: (1) fix the number
of stations |S| = 20 and the number of salesmen |D| = 5,
the number of cities |C| varies from 100 to 1100 for our
framework and from 5 to 20 for the MILP solver; (2) fix
the number of stations |S|= 20 and the average cities visited
by each salesman, i.e., |C|/|D|= 5, the number of salesmen
|D| varies from 20 to 220 for our framework and |D| from 1
to 5 for the MILP solver. To ensure the feasibility rate, we
empirically set r = 0.4 · |C|/|S|.

Baseline: The baseline we use is a naı̈ve MILP.
Metrics: The solution quality is measured by the gap

between our tour length and the optimal tour length. The

0.0 0.2 0.4
Optimality Gap

0

10

20

C
ou

nt

(a)

500 1000
Cities

0

50

Ti
m

e
(%

)
Part. TSP P.P. Cong.

(b)

5

10 |C|/|D|=5, OURS

0

250
|C|/|D|=5, MILP

100 300 500 700 900 1100
Cities

0

200
|D|=5, OURS

5 10 15 20
Cities

0

200
|D|=5, MILP

(c)

Fig. 3. Results on comparison experiments. (a) The distribution of
optimality gaps with mean value 12.48%. (b) The change of percentage of
running time for each part in the framework. (c) Comparison on Scalability.
All Y-axes are time in seconds.

running time is the duration from formatted data being fed
into the solver to the solver outputting the best solution found
for the instance.

Results: Our framework achieves a mean optimal gap of
12.48% and worst gap of 52.34% on the dataset, where the
distribution is shown in Figure 3(a). We believe that this is a
good performance as the worst-case guarantee for standard
TSP is around 50%. Figure 3(c) demonstrates the trends of
the increment in running time, where our framework shows
much better scalability than the MILP solver. Even with
more than 1000 cities, the running time of our framework
is still acceptably low. We can conclude that our framework
achieves a good suboptimality and tremendously reduce the
running time to be able to scale up to large problem size.

Comparing the first column in Figure 3(c), the running
time is shorter when there are more salesmen given the same
number of cities. We empirically evaluate the running time
of different components in our framework. Figure 3(b) shows
the changes of relative time consumption for subroutines in
the entire algorithm as the number of cities grows from 100
to 1100, while the number of depots is fixed at 5. The TSP
solver and the MILP in congestion control take up most of
the computation time, which explains the negative correlation
between running time and the number of salesmen. Given
more salesmen, the running time of the partition increases
slightly but the average size of TSP for salesmen decreases,
dramatically reducing the overall running time.

C. Studies of Components

1.00 1.25
Tour Length (1e3)

0

5

D
en

si
ty

(1
e-

3) Ours
N-N
KMeans

(a)

0 10
Gap (%)

2.5
5.0
7.5

Ti
m

e(
s)

0 25
Gap (%)

10

20 Appr
NN
LKH
SA

(b)

Fig. 4. Results of studies on components. (a) Keep TSP solver to be
LKH, our partition algorithm outperforms all baselines; (b) keep Partition
algorithm to be MST based, LKH solver produce best solution quality and
competitive computation time.

In this section, we validate the effectiveness of our par-
tition algorithm and TSP solver by comparing with several
other potential plugin algorithms.

Datasets: We conduct experiments on 100 randomly gen-
erated instances of |D| = 5, |C| = 150, |S| = 20, and r = 3.
To test the scalability of different TSP solvers, we further
randomly generate 100 instances of |D| = 5, |C| = 250,
|S|= 20, and r = 3.

Metrics: For partition algorithms, we evaluate the algo-
rithms by tour length only since all of them takes only
polynomial time. For TSP solvers, we evaluate them by tour
length, which is measured by the gap between using a MILP
TSP solver and themselves, as well as the running time.

Baselines: For the partition algorithm, we choose the
Nearest Neighbor (N-N) algorithm, which assigns each city

to its closest salesman, and the K-Means clustering algo-
rithm, which first clusters the cities into several groups
and then assigns each group to the salesman closest to its
cluster center, as baselines. For TSP solvers, we choose the
representatives of main approaches, including neural-based
solver [26], approximation solver (Christofides algorithm),
heuristic solver (LKH), and metaheuristic solver (SA).

Results: Results in Figure 4(a) show that our partition
method beats both NN and KMeans. The result in the left
figure of Figure 4(b) shows that LKH gives much smaller
gaps than others within acceptable running time. And the
right one of Figure 4(b) shows that LKH solver still produces
the best solution with a small running time on large cases
while the neural-based solver has a enormous drop in its
solution quality due to the out-of-distribution issue.

We want to emphasize here again that our framework is
flexible with arbitrary partition algorithms and TSP solvers,
which means that it can performs better as the development
of both components.

D. Effectiveness of Resource Distribution

In this subsection, we investigate the effectiveness of
resource distribution given the total resources and problem
size to guide the station setup.

Datasets: We use the random dataset with 1200 instances
of fixed |D| = 30, |C| = 1200. We randomly and equally
divide the instances into 12 parts, with the number of stations
|S| in each part varies from 1∼ 120, where the total amount
of resources r · |S|= 240.

Metrics: We record the tour length and the running time
for each part of the dataset.

3 8 16 40 120
Stations

6

8

10
Le

n.
 (1

e3
) (

B
ox

)

0

50

100

Fe
as

. R
at

e
(L

in
e)

Fig. 5. Effect of the dispersion of sta-
tions. There are no feasible solutions
for cases with 1 or 3 station(s).

Result: As shown in
Figure 5, the increase in
stations leads to the in-
crease of feasibility rate
and the decrease of the
tour length, which means
that a more dispersed dis-
tribution of resources facil-
itates easier utilization. It
suggests that the resource
should be distributed as
dense as possible. In prac-
tice, there is a cost to set
up a station so the overall optimal resource allocation needs
to balance the gain and cost of setting up stations.

VI. CONCLUSION

We define a new variant of MDTSP to capture the energy
constraints in real-world applications and propose a novel
framework to solve them. Our method is able to efficiently
produce high-quality solutions compared against baselines
and solve much larger problems than MILP formulation,
which is verified by the experiments. For future work, we
would like to improve the congestion control part with a
neural network to get better scalability and improve the
partition part with a better heuristic.

REFERENCES

[1] E. Benavent and A. Martı́nez, “Multi-depot multiple tsp: a polyhedral
study and computational results,” Annals of Operations Research, vol.
207, pp. 7–25, 2013.

[2] S. Yadlapalli, W. A. Malik, S. Darbha, and M. Pachter, “A lagrangian-
based algorithm for a multiple depot, multiple traveling salesmen
problem,” Nonlinear Analysis: Real World Applications, vol. 10, no. 4,
pp. 1990–1999, 2009.

[3] P. Oberlin, S. Rathinam, and S. Darbha, “A transformation for a
heterogeneous, multiple depot, multiple traveling salesman problem,”
in 2009 American control conference. IEEE, 2009, pp. 1292–1297.

[4] K. Sundar and S. Rathinam, “An exact algorithm for a heterogeneous,
multiple depot, multiple traveling salesman problem,” in 2015 Inter-
national Conference on Unmanned Aircraft Systems (ICUAS). IEEE,
2015, pp. 366–371.

[5] T. Ramadhani, G. F. Hertono, and B. D. Handari, “An ant colony
optimization algorithm for solving the fixed destination multi-depot
multiple traveling salesman problem with non-random parameters,” in
AIP Conference Proceedings, vol. 1862, no. 1. AIP Publishing LLC,
2017, p. 030123.

[6] S. Ghafurian and N. Javadian, “An ant colony algorithm for solving
fixed destination multi-depot multiple traveling salesmen problems,”
Applied Soft Computing, vol. 11, no. 1, pp. 1256–1262, 2011.

[7] T. S. Rao, “A simulated annealing approach to solve a multi traveling
salesman problem in a fmcg company,” Materials Today: Proceedings,
vol. 46, pp. 4971–4974, 2021.

[8] Y. Zhang, X. Han, Y. Dong, J. Xie, G. Xie, and X. Xu, “A novel
state transition simulated annealing algorithm for the multiple traveling
salesmen problem,” The Journal of Supercomputing, vol. 77, pp.
11 827–11 852, 2021.

[9] Y. Zhou, W. Xu, Z.-H. Fu, and M. Zhou, “Multi-neighborhood
simulated annealing-based iterated local search for colored traveling
salesman problems,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 9, pp. 16 072–16 082, 2022.

[10] M. Diaby, “Linear programming formulation of the multi-depot mul-
tiple traveling salesman problem with differentiated travel costs,”
Traveling Salesman Problem, Theory and Applications. InTech, New
York, NY, pp. 257–282, 2010.

[11] D. Scott, S. G. Manyam, D. W. Casbeer, and M. Kumar, “Market
approach to length constrained min-max multiple depot multiple
traveling salesman problem,” in 2020 American Control Conference
(ACC). IEEE, 2020, pp. 138–143.

[12] M. Held and R. M. Karp, “A dynamic programming approach to
sequencing problems,” Journal of the Society for Industrial and
Applied mathematics, vol. 10, no. 1, pp. 196–210, 1962.

[13] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming
formulation of traveling salesman problems,” Journal of the ACM
(JACM), vol. 7, no. 4, pp. 326–329, 1960.

[14] G. Dantzig, Linear programming and extensions. Princeton university
press, 1963.

[15] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[16] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, “The
traveling salesman problem,” in The Traveling Salesman Problem.
Princeton university press, 2011.

[17] N. Christofides, “Worst-case analysis of a new heuristic for the
travelling salesman problem,” Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, Tech. Rep., 1976.

[18] A. R. Karlin, N. Klein, and S. O. Gharan, “A (slightly) improved
approximation algorithm for metric tsp,” in Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, 2021, pp.
32–45.

[19] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations research, vol. 21, no. 2, pp.
498–516, 1973.

[20] L. Xin, W. Song, Z. Cao, and J. Zhang, “Neurolkh: Combining
deep learning model with lin-kernighan-helsgaun heuristic for solving
the traveling salesman problem,” Advances in Neural Information
Processing Systems, vol. 34, pp. 7472–7483, 2021.

[21] J. J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities.” Proceedings of the national
academy of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[22] Y. Luo, “Design and improvement of hopfield network for tsp,”
in Proceedings of the 2019 International Conference on Artificial
Intelligence and Computer Science, 2019, pp. 79–83.

[23] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances
in neural information processing systems, vol. 28, 2015.

[24] J. Perera, S.-H. Liu, M. Mernik, M. Črepinšek, and M. Ravber,
“A graph pointer network-based multi-objective deep reinforcement
learning algorithm for solving the traveling salesman problem,” Math-
ematics, vol. 11, no. 2, p. 437, 2023.

[25] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning com-
binatorial optimization algorithms over graphs,” Advances in neural
information processing systems, vol. 30, 2017.

[26] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve
routing problems!” arXiv preprint arXiv:1803.08475, 2018.

[27] X. Bresson and T. Laurent, “The transformer network for the traveling
salesman problem,” arXiv preprint arXiv:2103.03012, 2021.

[28] K. Sundar and S. Rathinam, “Algorithms for heterogeneous, multiple
depot, multiple unmanned vehicle path planning problems,” Journal
of Intelligent & Robotic Systems, vol. 88, pp. 513–526, 2017.

[29] P. Kitjacharoenchai, M. Ventresca, M. Moshref-Javadi, S. Lee, J. M.
Tanchoco, and P. A. Brunese, “Multiple traveling salesman problem
with drones: Mathematical model and heuristic approach,” Computers
& Industrial Engineering, vol. 129, pp. 14–30, 2019.

[30] M. Vali and K. Salimifard, “A constraint programming approach
for solving multiple traveling salesman problem,” in The Sixteenth
International Workshop on Constraint Modelling and Reformulation,
2017, pp. 1–17.

[31] Z. Wang, X. Fang, H. Li, and H. Jin, “An improved partheno-genetic
algorithm with reproduction mechanism for the multiple traveling
salesperson problem,” IEEE Access, vol. 8, pp. 102 607–102 615, 2020.

[32] W. Liu, S. Li, F. Zhao, and A. Zheng, “An ant colony optimization
algorithm for the multiple traveling salesmen problem,” in 2009 4th
IEEE conference on industrial electronics and applications. IEEE,
2009, pp. 1533–1537.

[33] M. Yousefikhoshbakht, F. Didehvar, and F. Rahmati, “Modification of
the ant colony optimization for solving the multiple traveling salesman
problem,” Romanian Journal of Information Science and Technology,
vol. 16, no. 1, pp. 65–80, 2013.

[34] P. Venkatesh and A. Singh, “Two metaheuristic approaches for the
multiple traveling salesperson problem,” Applied Soft Computing,
vol. 26, pp. 74–89, 2015.

[35] V. Pandiri and A. Singh, “A hyper-heuristic based artificial bee colony
algorithm for k-interconnected multi-depot multi-traveling salesman
problem,” Information Sciences, vol. 463, pp. 261–281, 2018.

[36] A. Ceselli and G. Righini, “The electric traveling salesman problem:
properties and models,” Technical Report 2434/789142-University of
Milan https://doi. org/10.13140 . . . , Tech. Rep., 2020.

[37] R. Roberti and M. Wen, “The electric traveling salesman problem
with time windows,” Transportation Research Part E: Logistics and
Transportation Review, vol. 89, pp. 32–52, 2016.

[38] K. Sundar and S. Rathinam, “Generalized multiple depot traveling
salesmen problem—polyhedral study and exact algorithm,” Computers
& Operations Research, vol. 70, pp. 39–55, 2016.

[39] K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver
for constrained traveling salesman and vehicle routing problems,”
Roskilde: Roskilde University, vol. 12, 2017.

[40] C. R. C. in Distribution Management, “mdvrp,” http://neumann.hec.
ca/chairedistributique/data/mdvrp/, 2023.

[41] S. Zhang, W. Zhang, Y. Gajpal, and S. Appadoo, “Ant colony algo-
rithm for routing alternate fuel vehicles in multi-depot vehicle routing
problem,” Decision Science in Action: Theory and Applications of
Modern Decision Analytic Optimisation, pp. 251–260, 2019.

[42] B. Peng, L. Wu, Y. Yi, and X. Chen, “Solving the multi-depot
green vehicle routing problem by a hybrid evolutionary algorithm,”
Sustainability, vol. 12, no. 5, p. 2127, 2020.

[43] M. E. H. Sadati and B. Çatay, “A hybrid variable neighborhood
search approach for the multi-depot green vehicle routing problem,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 149, p. 102293, 2021.

[44] F. Blahoudek, T. Brázdil, P. Novotnỳ, M. Ornik, P. Thangeda, and
U. Topcu, “Qualitative controller synthesis for consumption markov
decision processes,” in International Conference on Computer Aided
Verification. Springer, 2020, pp. 421–447.

[45] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org, 2017.

[46] Bluebikes, “System data,” https://s3.amazonaws.com/hubway-data/
current bluebikes stations.csv, 2023.

https://www.gurobi.com
http://neumann.hec.ca/chairedistributique/data/mdvrp/
http://neumann.hec.ca/chairedistributique/data/mdvrp/
 https://www.openstreetmap.org
https://s3.amazonaws.com/hubway-data/current_bluebikes_stations.csv
https://s3.amazonaws.com/hubway-data/current_bluebikes_stations.csv

	Introduction
	Related Work
	Methods for TSP and Its Variants
	CMDTSP-related TSP Variants

	Problem Formulation
	Methodology
	City assignment
	Congestion control

	Experiments
	Comparison with Baselines
	Compare with Exact Algorithm
	Studies of Components
	Effectiveness of Resource Distribution

	Conclusion
	References

