
DETAILS OF ALGORITHM 2
A. Explaination for Function f and g

For tree T (u), its optimal partitions T̃ (u) and T̂ (u) should
contain optimal partitions for all subtrees, i.e. optimal T̃ (v) or
optimal T̂ (v) for all v ∈H(u), where H(u) represents the set
of children of node u in T (rt). We briefly discuss the kind
of partitions children nodes can have based on whether the
root is a city or a depot. If root u is a city and is partitioned
with T̃ , then there exists a child v whose subtree contains a
depot connected to u. Thus, u and v are connected and have
the same partition type T̃ . In this case, node v contributes
f (v)+ c(u,v) to value function f (u). Other children cannot
connect to both u as well as any depot in their subtrees at
the same time. That is, each child either connects to u with
partition type T̂ or does not connect to u and has partition
type T̃ . Thus each child v′ 6= v contributes min{ f (v′),g(v′)+
c(u,v′)} to the value of f (u). Next, in the case when the root
u is either a depot partitioned by T̃ or a city partitioned by
T̂ , every child v ∈ H(u) cannot connect to both u and any
depot in their subtrees at the same time, which contributes
min{ f (v),g(v)+c(u,v)} to the value of f (u) or g(u). Finally,
value g(u) = +∞ for every depot u as we mentioned above.

B. Proof for Theorem 1
Lemma 1: Given the input as in Theorem 1, the assign-

ment of partition type for each node based on the output of
Algorithm 2 is consistent with the resulting partition.

Proof: We prove the lemma by contradiction. Assume
u is the node with an inconsistent partition type and the
minimum subtree.

If u is a leaf node in T (rt), then f (u) = +∞ for u ∈ C
and g(u) = +∞ for u ∈ D. The former results in type T̂ and
the latter results in type T̃ , matching the resulting partition
in both cases. So u cannot be a leaf node, and by minimum
assumption, all its children should have consistent types.

If u is assigned type T̃ but does not connect to any depot
in the subtree, then u∈C. By Eq. (1), there exists a child v of
u connect to u and assigned type T̃ , which means v also has
an inconsistent type, contradicting the minimum assumption.

If u is assigned type T̃ but connects to more than one
depot in the subtree, then u can be either a city or a depot.
If u is a city, then by Eq. (1), the reconstruction only assigns
one such v to connect to u and has type T̃ . So the other child
connects to u and a depot in its subtree has the wrong type
T̂ , contradicting the minimum assumption. If u is a depot,
then all children cannot both connect to u and be assigned
T̃ , which means the child connects to it and a depot in the
subtree has the wrong type T̂ , contradicting the minimum
assumption.

If u is assigned type T̂ , then u∈C by the assignment rule.
If u connects to any depot in the subtree, then by Eq. (2),
every child either connects to u or is assigned type T̃ . The
child connecting to v and a depot in its subtree has the wrong
type T̂ , contradicting the minimum assumption.

Lemma 2: Given the input as in Theorem 1, the recon-
struction based on the value function assignment in Eq. (1)-
(2) produce the minimum T̃ (rt) and T̂ (rt).

Proof: We prove the lemma by induction. Let N =
m+n, where m is the number of depots and n is the number
of cities. When N = 1, either there is no city to visit or
there is no depot for a salesman to start from and so the
optimality holds trivially. Suppose the algorithm gives an
optimal solution for all N ∈ {1,2, · · · ,m+ n− 1}. Now, for
the case when N = m+n, assume that there exists a partition
with smaller total weights. We prove that this assumption
leads to a contradiction and hence the statement holds for the
case when N = m+n. Let v be the root node of the smallest
subtree that v has the same partition type in both the optimal
partition and our partition, but the optimal partition gives a
smaller total weight of the remaining edges. Such node v
exists because the root is given the same partition type and,
by assumption, does not minimize the weights. Let We denote
the total weights of remaining edges in the subtree rooted at v
under our partition and Wo of that under the optimal partition.
By assumption Wo < We. Now we construct a partition for
the subtree rooted at v with total weights no larger than Wo
and no smaller than We to get the contradiction. First, assign
all child nodes of v the same partition type as in the optimal
partition and apply our reconstruction rule to get partitions
for their subtrees. Then connect v and its children in the same
way as the optimal partition. The new partition is correct
because both the connections between v and its children and
its children’s partition types are the same as the optimal
partition. Let W denote the total weights of the new partition.
By the induction hypothesis, all subtrees rooted at nodes in
C(v) are optimal, which means the total weight of remaining
edges in the subtree rooted at v is no larger than Wo, i.e.
W ≤Wo. On the other hand, by Eq. (1)-(2), our partition
selects the optimal way of connecting v and its children,
which means We ≤W . So, we have We ≤W ≤Wo < We, a
contradiction. Hence, the statement holds for N = m+n, and
by induction, it holds for all N.

Proof: [Proof for Thm. 1] By lemma 1, all node has
consistent partition type. If the partition is incorrect, then
there exists a connected component with either more than one
depot or zero depots. In both cases, the root of the component
has an inconsistent partition type, contradicting lemma 1. So
the partition is correct. By lemma 2, T̃ (rt) is the optimal
partition.
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