
MILP FOR CMDTSP
The CMDTSP can be formulated as a Mixture Integer

Linear Programming problem. Suppose there are m depots, n
cities, l stations, and rs units resources for station s. We use E
to denote each salesman’s initial energy level and maximum
energy level. For simplicity, we use [x] to denote the set
{z ∈ N+,z≤ x} in this section.

Let βa,u,v,i, j ∈ {0,1}, be a binary variable indicating
whether a salesman who starts from depot a passes the edge
between node i and node j when traveling from depot or
city u to depot or city v. Then the objective function is to
minimize the total weights of selected edges:

min
m

∑
a=1

m+n

∑
u,v=1

m+n+l

∑
i, j=1

ci, j ·βa,u,v,i, j. (4)

Let γa,u ∈ {0,1} be the binary variable indicating whether
depot or city u is visited by the salesman who starts from
depot a. Then each city should be visited exactly once, which
can be expressed as constraints:

m

∑
a=1

γa,u = 1, u ∈ [m+n], (5a)

γa,a = 1, a ∈ [m]. (5b)

To guarantee the TSP properties of salesmen, we adapt
the GG formulation [?] with binary φa,u,v ∈ {0,1}, which
indicates whether the tour starts from depot a will con-
secutively visit depots or cities u and v, and real variable
fa,u,v ∈ R+ w.r.t. φa,u,v. Eq. (6a)-(6b) are the constraints to
handle different lengths of TSP tours given the city partition,
while the rest constraints are standard GG formulations for
each salesman.

m+n

∑
u=1

φa,u,v = γa,v,a ∈ [m],v ∈ [m+n]\{a}, (6a)

m+n

∑
v=1

φa,u,v = γa,u,a ∈ [m],u ∈ [m+n]\{a}, (6b)

m+n

∑
u=1

φa,u,a =
m+n

∑
v=1

φa,a,v,a ∈ [m], (6c)

m+n

∑
u=1

φa,u,a ≥ γa,v,a ∈ [m],v ∈ [m+n]\{a}, (6d)

m+n

∑
u=1

φa,u,a ≤ 1,a ∈ [m], (6e)

m+n

∑
u=1

γa,u−φa,u,a ≥ 1,a ∈ [m], (6f)

φa,u,u = 0,a ∈ [m],u ∈ [m+n], (6g)
φa,u,v = 0,a ∈ [m],u ∈ [m+n],v ∈ [m], (6h)
fa,u,v ≤ (m+n) ·φa,u,v,a ∈ [m],u,v ∈ [m+n], (6i)
m+n

∑
v=1

γa,v− fa,a,v = 1,a ∈ [m], (6j)

m+n

∑
u=1

fa,u,v− fa,v,u = γa,v,a ∈ [m],v ∈ [m+n]\ [m], (6k)

fa,u,u = 0,a ∈ [m],u ∈ [m+n], (6l)

fa,u,v = 0,a ∈ [m],u ∈ [m+n],v ∈ [m]. (6m)

Given the city partition and the TSP property guarantee, we
then add the following constraints to select edges in the
whole graph to meet with them and get rid of some corner
cases, such as self-loops, connected depots, etc. We define
binary variables βa,u,v,i, j ∈{0,1} for a∈ [m],u,v∈ [m+n], i,∈
[m+n+ l] representing the selection of edge (i, j) during the
visit between cities or depots u,v for salesman a.

The first constraint we need to meet is the resource
limitation for each station, which is

m

∑
a=1

m+n

∑
u,v=1

m+n+l

∑
j=1

βa,u,v,m+n+s, j ≤ rs,s ∈ [l]. (7)

Then we should make the selection of edges consistent with
previous TSP results:

m+n+l

∑
j=1

βa,u,v,u, j = φa,u,v,a ∈ [m],u,v ∈ [m+n], (8a)

m+n+l

∑
i=1

βa,u,v,i,v = φa,u,v,a ∈ [m],u,v ∈ [m+n]. (8b)

Next, we ask the edges selected between u and v to form a
path, which means the in-degree and out-degree are at most
1 for each node and exactly 0 for the start and end nodes

m+n+l

∑
j=1

βa,u,v,i, j ≤ 1,a ∈ [m],u,v ∈ [m+n],

i ∈ [m+n+ l], (9a)
m+n+l

∑
i=1

βa,u,v,i, j ≤ 1,a ∈ [m],u,v ∈ [m+n],

j ∈ [m+n+ l], (9b)
m+n+l

∑
i=1

βa,u,v,i,u = 0,a ∈ [m],u,v ∈ [m+n], (9c)

m+n+l

∑
j=1

βa,u,v,v, j = 0,a ∈ [m],u,v ∈ [m+n], (9d)

and the in-degree should be equal to out-degree
m+n+l

∑
j=1

βa,u,v,i, j−βa,u,v, j,i = 0,

a ∈ [m],u,v ∈ [m+n], i ∈ [m+n+ l]\{u,v}. (10)

Also, we need to get rid of self-loop

βa,u,v,i,i = 0,a ∈ [m],u,v ∈ [m+n],

i ∈ [m+n+ l], (11)

Finally, we do not want to visit any other city or depots along
the path from u to v, i.e.

m+n+l

∑
j=1

βa,u,v,i, j = 0,a ∈ [m],u,v ∈ [m+n],

i ∈ [m+n+ l]\{u,v}. (12)

To address the energy constraints, we define non-negative
real variables eu, representing the energy level of a salesman



when visiting the depot or city u. Initially, the energy for all
salesman is E,

ea = E,a ∈ [m]. (13)

Every salesman should not run out of energy. Basically,

eu ≥ 0,u ∈ [m+n] (14)

In case of the edge (i, j) selected, if both i and j are stations,
then the distance should not exceed the maximum distance
a full energy salesman can travel,

ci, j ·βa,u,v,i, j ≤ E,a ∈ [m],u,v ∈ [m+n],

i, j ∈ [m+n+ l]\ [m+n]. (15)

If the start node i is not a station but a city or depot u,
then the distance between u j should not take more than the
energy remaining at u to go,

cu, j ·βa,u,v,u, j ≤ e[u],a ∈ [m],u,v ∈ [m+n],

j ∈ [m+n+ l]. (16)

And if the arriving node j is not a station but a city v, then the
energy remains is bounded by full minus the consumption,
which is

ci,v ·βa,u,v,i,v ≤ E− e[v],a ∈ [m],u ∈ [m+n],

v ∈ [m+n]\{a}, i ∈ [m+n+ l]\ [m+n]. (17)

If both i and j are not stations, i.e. i = u and j = v, then

(cu,v +E) ·βa,u,v,u,v ≤ E + e[u]− e[v],a ∈ [m],

u ∈ [m+n],v ∈ [m+n]\{a}. (18)

For the path returning back to the depot, where the arriving
node has u[v] = 0, we can get two restrictions following the
discussion above,

(cu,a +E) ·βa,u,a,u,a ≤ E + e[u],a ∈ [m],u ∈ [m+n], (19a)
ci,a ·βa,u,a,i,a ≤ E,a ∈ [m],u ∈ [m+n], i ∈ [m+n+ l]. (19b)

Finally, combine objects (4) and constraints (5)-(19), we get
the MILP formulation.
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