Proceedings of Machine Learning Research vol vvv:1-21, 2026

Online Motion Planning for Connected Multi-Robot Systems using
Vision Language Models as High-level Planners

Kunal Garg KGARG24 @ ASU.EDU
School for Engineering of Matter, Transport, and Energy at ASU

Devika Shaj Kumar Nair DSHAJKUM @ ASU.COM
School of Electrical, Computing and Energy Engineering at ASU

Songyuan Zhang SZHANG21@MIT.EDU
Jacob Arkin JARKIN @MIT.EDU
Chuchu Fan CHUCHU @MIT.EDU

Department of Aeronautics and Astronautics, MIT

Abstract

Connected multi-agent robotic systems (MRS) are prone to deadlocks in an obstacle environment
where the robots can get stuck away from their desired locations under a smooth low-level con-
trol policy. Without an external intervention, often in terms of a high-level command, a low-level
control policy cannot resolve such deadlocks, and grid-based planners are very slow for real-time
online intervention. Utilizing the generalizability and low data requirements of foundation models,
this paper explores the possibility of using vision-language models (VLMs) as high-level planners
for deadlock resolution. We propose a hierarchical control framework where a foundation model-
based high-level planner helps to resolve deadlocks by assigning a leader for the MRS as well as
a set of waypoints for the MRS leader. Then, a low-level distributed control policy is executed to
safely follow these waypoints, thereby evading the deadlock. We conduct extensive experiments
on various MRS environments using the best available pre-trained VLMs. We compare their per-
formance with a graph-based planner in terms of computational time and effectiveness in helping
the MRS reach their target locations. Our results illustrate that, compared to grid-based planners,
the foundation models perform better and can assist MRS operating in complex obstacle-cluttered
environments to resolve deadlocks efficiently. Project website: https://mit-realm.github.io/VLM-
gcbfplus-website/.

Keywords: Multi-robot systems; Vision Language Models; Deadlock Resolution

1. Introduction

Multi-agent robotic systems (MRS) are widely used in various applications today, such as ware-
house operations (Li and Ma, 2023; Wurman et al., 2008), self-driving cars (Dinneweth et al.,
2022), and coordinated drone navigation in a dense forest for search-and-rescue missions (Tian
et al., 2020), among others. In various MRS applications for navigating in unknown environments,
such as coverage (Cortes et al., 2004) and formation control (Mehdifar et al., 2020), robot agents
must remain connected so that they can actively communicate with each other to share information
and build the unknown or partially known environment collectively. Additionally, ensuring safety
in terms of collision avoidance and scalability to large-scale multi-agent problems are also crucial
requirements of the control design of MRS. When the requirements of connectivity and safety come
together, existing methods for multi-agent coordination and motion planning (Ma et al., 2017) often

© 2026 K. Garg, D.S.K. Nair, S. Zhang, J. Arkin & C. Fan.

https://mit-realm.github.io/VLM-gcbfplus-website/
https://mit-realm.github.io/VLM-gcbfplus-website/

GARG NAIR ZHANG ARKIN FAN

!

Leader

| I 3 . Foundation model | I
| z . I‘fli
) - follower |l ! I == Low-level controller
s Deadlock 1 | |’| Leader: ld assignment J

| Waypoints:
I % 1 3 4 t [[X1 Vil oo [xp,)’P]] I

{ Problem description + Expected output description }

No deadlock

Figure 1: Overview of the hierarchical control framework: The robots are shown in blue, their
goals in green, and obstacles in red. Based on the currently available environmental information,
a foundation model acts as a high-level planner and assigns a leader, as well as a set of waypoints
(shown in purple), for the leader of the MRS, resulting in a leader-follower formation. Then, a
low-level controller provides a distributed control policy for safety and connectivity.

result in deadlocks, where agents get stuck away from their desired goal locations. Particularly, with
the additional requirement of connectivity, even one robot getting stuck in a deadlock results in all
the agents getting stuck, making it crucial to resolve the deadlocks for connected MRS. Without
external intervention, a smooth low-level control policy cannot resolve such deadlocks. A high-
level planner, on the other hand, can intervene in such situations and suggest a set of intermediate
waypoints to move the MRS away from the deadlock situation. Since the environment (in terms of
locations, sizes, and shapes of obstacles) is a priori unknown, such planning must be done online
based on the currently available information. However, traditional path planners, such as grid-based
planners, cannot be used for real-time path planning due to their computational demands.

This work proposes a hierarchical control architecture in which a high-level planner can in-
tervene and provide a mechanism to resolve deadlocks. Our proposed planner first configures the
MRS in a leader-follower formation and takes the environment information available to the MRS
so far. Then, the planner proposes a high-level command in terms of assigning a set of waypoints
for the MRS leader to navigate safely in obstacle environments. Motivated by the generalizability
and low data requirements of foundation models (Kojima et al., 2022) as well as the recent success
of foundation models in assisting a control framework for complex robotics problems (Ren et al.,
2024; Huang et al., 2024), we explore the possibility of using vision language models (VLMs) as
high-level planners to resolve deadlocks in MRS. However, unlike other works that use founda-
tion models proactively, whether directly for planning, translation, or reward design, we are instead
interested in using them reactively to resolve a class of failure modes in low-level controllers for
MRS, namely deadlocks. This helps to ensure that the VLM does not lead to a violation of safety
as it is taken care of by the provably safe low-level control policy. When a deadlock is detected, a
VLM is prompted to generate a set of deadlock-resolving navigation waypoints for the leader, con-
ditioned on a top-view image-based description of the so far observed environment. This temporary
high-level assignment aims to move the MRS out of the deadlock so that the low-level controller
can continue progressing toward the goal.

Contributions The contributions of the paper are as follows. 1) We propose a novel hierar-
chical control architecture using foundation models to resolve deadlocks in an obstacle-cluttered
environment for MRS (see Figure 1). For large-scale MRS, where a single leader assignment can
lead to a deterioration in performance, we propose a hierarchy of leaders for efficient deadlock reso-
lution. 2) We compare the performance of various VLMs in efficient deadlock resolution for MRS.
To illustrate the utility of vision-based models over text-based models, we use large language mod-

HIGH-LEVEL PLANNING USING VLMSs

els (LLMs) as baseline planners. We first evaluate the spatial reasoning capability of various vision-
and text-based foundation models by evaluating their ability in locating the obstacles correctly and
generating viable waypoints in the free space. Then, we conduct extensive experiments on a variety
of MRS environments, varying the number of agents from 5 to 50 with various VLMs. Our results
demonstrate that VLM-based high-level planners are effective at resolving deadlocks in MRS and
more efficient in terms of MRS goal-reaching rate in a given time budget as compared to LLMs as
well as graph-based planners such as A* (Hart et al., 1968). We provide a detailed discussion and
possible future directions to improve the performance of foundation models as high-level planners
for assisting low-level controllers in complex MRS problems.

2. Related work

In recent years, learning-based methods have shown promising results in computing a low-level
control policy for complex robotic systems (Dawson et al., 2023; Zhang et al., 2023; Garg et al.,
2024). Considering deadlocks, many works have been proposed for detecting and moving out of
deadlocks under safety constraints (Grover et al., 2021, 2023; Chen et al., 2024b; Zhang et al.,
2025a). However, these works do not consider connectivity constraints. Most similar to our work,
(Sinha et al., 2024) uses an LLM to intervene on high-level planning; however, this work addresses
only a single agent and chooses among a small set of control strategies. More recently, VLMs have
become popular in robotic applications due to their strong semantic reasoning capabilities (Ren
et al., 2024). VLMs have shown promising results in reasoning about future actions of robotic
systems with partial environment information (Kwon et al., 2023; Ma et al., 2023; Wen et al., 2023;
Chen et al., 2024a; Gao et al., 2023; Jiang et al., 2022). In particular, VLMs have been successfully
employed in robot navigation tasks (Shah et al., 2023a; Dorbala et al., 2024; Shah et al., 2023b),
even when long-horizon reasoning is required (Huang et al., 2024). In addition, VLMs have also
been used to convert images to text descriptions for prompting LLMs with state information (Sinha
et al., 2024; Xie et al., 2024; Kwon et al., 2023; Shah et al., 2023a; Dorbala et al., 2024); in contrast,
our work directly uses the output of a VLM for planning.

3. Problem formulation

The MRS consists of [V robots navigating in an obstacle-cluttered environment to reach their goal
locations {ngoal N |. The environment X C R? consists of stationary obstacles O; C R? for
I €{1,2,..., M}, which denote walls, blockades, and other obstacles in the path of moving agents.
Each agent has a safety distance > 0 and a limited sensing and communication radius R > r such
that the agents can only sense and communicate with other agents or obstacles if they lie within
this radius. The agents use LiDAR to sense the obstacles, and the observation data for each agent
© consists of n;ays evenly-spaced LiDAR rays yy) originating from each robot and measures the
relative location of obstacles. The time-varying connectivity graph G(¢) = (V(t),£(t)) dictates
the network among the agents and obstacles. Here, V(t) = V* U V°(t) denotes the set of nodes,
where V* = {1,2,..., N} denotes the set of agents, V°(¢) is the collection of all LiDAR hitting
points at time t > 0, and £(t) C V%(t) x V(t) denotes the set of edges, where (i,7) € E£(¢)
means the flow of information from node j to agent ¢. In addition to safety, the resulting underlying
graph topology for the MRS is required to remain connected (see (Zavlanos and Pappas, 2008) for

MRS connectivity) so that robots can build team knowledge and share information, where given a

GARG NAIR ZHANG ARKIN FAN

_;'B/ e ,,‘&‘d& A %
» * =7 G =
a‘,‘—». ol A — — — é

Figure 2: Illustration of deadlock resolution using leader-follower formation. The gray circle in the
center is an obstacle, and the goals are denoted by the stars.

communication radius R > 0, two agents 4, j are connected if ||p; — p;|| < R. The formal problem
statement studied in this paper is described next (more details in Appendix A of the supplementary
material).

Problem 1 Consider the multi-agent system with connected initial topology G(0), safety parame-

ters v > 0, a communication radius R > 0, a set of stationary obstacles {O; }j]\/il, goal locations
{p;goal N |, and a terminal time T > 0. Design a distributed control architecture such that

» Safety: Each agent maintains a safe distance from other agents and obstacles at all times,

ice. Ips(t) = p; ()] = 2r,¥5 # i and |y (8)] > 7, Vj forallt > 0;

* Connectivity: Graph G(t) remains connected ¥t > 0;

* Performance: Agents reach their respective goals, i.e., 1<1¥ lpi(t) — ngoalH =0.
t<TF

4. Hierarchical control architecture

In an MRS problem with connectivity requirements, the presence of obstacles can lead to deadlock
situations for the entire MRS, as illustrated in Figure 1. We propose a hierarchical control archi-
tecture consisting of a low-level control policy that accounts for safety and connectivity constraints
and a high-level planner that assists the low-level controller with the goal-reaching requirement
upon detection of a deadlock. We first describe how we detect the deadlocks.

Deadlock detection In the proposed hierarchical architecture, the high-level planner is trig-
gered upon detection of a deadlock, which we define as a situation when the average speed of the

MRS falls below a minimum threshold 4, > 0, i.e., W < J, and the average distance of the

__goal
agents from their goals is at least 64 > 0, i.e., M > d4. Since the graph topology is

connected, the average MRS speed can be computed through consensus updates.

Leader-follower formation When a deadlock is detected, the high-level planner assigns a
leader among the /N agents along with a set of intermediate waypoints for the leader, so that the
leader does not get stuck in a deadlock due to obstacles on its path to its goal. The MRS remains
in the leader-follower mode for a fixed time 7, > 0, which is a user-defined hyper-parameter.
We provide the details of the VLM-based high-level planner in Section 4.1. Once a leader and its
waypoints are obtained, the MRS reconfigures into a leader-follower formation. Figure 2 illustrates
a relatively simple scenario consisting of 5 agents and one obstacle where a goal-reaching control
policy with the ability to maintain connectivity and safety leads to a deadlock. Through the leader-
follower formation, the MRS is able to evade this situation and complete its task. The leader-
follower assignment is done by sequentially assigning the closest unassigned follower to its closest
assigned agent as its leader. Let Vieoq(t, k) be the set of agents that have been assigned as a leader

HIGH-LEVEL PLANNING USING VLMSs

at time ¢, iteration k, initiated as Viead(t,0) = {41cad,0}» Where djeaq,0 € V is the leader agent. Then,
the k—th follower with k > 1is chosen as ifoliow,k = arg Minjey\ vy, ¢, k—1) WiV q(tk—1) Ilpi—
p;||, and this follower is added to the set of the leaders, i.e., Viead (¢, k) = Viead (t, & —1) U{isollow,k }-

The leader for the k—th follower is given as 4jcaqr = argmin ||pi .. » — Pill- The process
7:evleacl(tk*l) ’
is repeated till each agent ¢ is assigned an agent 1,4 to follow. Next, for each agent ¢ that is at

a given minimum distance away from its goal, i.e., if [|[p; — p5°®|| > duin for some dpin > 0,
their temporary goal is chosen as the location of their leaders, i.e., ﬁf’roal = Pipaq- The complete

leader-follower assignment algorithm is described in Appendix B of the supplementary material.
Multi-leader assignment using k-means clustering In the cases of large-scale MRS, e.g.,
N > 10, assigning one leader to the MRS might lead to a sub-optimal performance. To this end,
we decompose the MRS into sub-teams and assign a sub-leader to each of the sub-teams along with
a main leader for the MRS. The decomposition of the MRS agents into X' > 1 disjoint clusters
Vi, k = 1,..., K such that V* = Ulev,? and V' NV} = () for i # j, is performed based on the
inter-agent distances using k-means clustering (MacQueen et al., 1967). The main leader [, € V¢
is chosen as the agent with minimum distance to its goal. Once the clusters of agents {Vj} are
obtained, a sub-leader [, is chosen based on the vicinity of the agents in V}! to the cluster of the main
leader V§,. Note that for large-scale MRS, the high-level planner is utilized only for the waypoint
assignment, as the leader is assigned heuristically based on the distance to the goal locations.

4.1. Foundation model-based high-level planner

Based on the success of foundation models in a variety of robotic tasks that require spatial under-
standing, we explore their utility as the high-level planner for the leader and waypoint assignment.
To use a pre-trained foundation model for waypoint assignment, we provide the model with task-
relevant context that is expected to be helpful when generating a decision. In particular, the prompt
to the model consists of three main components: (1) the Task description, (2) an Environment state,
and (3) the Desired output. Next, we explain each of the prompt components in more detail. The
exact prompts used in the experiments are provided in Appendix C in the supplementary material.

Task description The initial part of the prompt consists of a description of the deadlock res-
olution problem for a multi-robot system. This includes the system requirements of maintaining
safety, connectivity, and each agent reaching its assigned goal. Further, we include a description
of the planner’s role in providing high-level commands when the MRS is stuck in a deadlock. The
description also includes the number of waypoints P > 0 that the planner is supposed to suggest.
This component of the prompt is created offline and is fixed for all calls.

Environment state The environment state of the MRS is a necessary context to make a good
leader assignment decision, so we encode it in a textual description that is included as a component
of the prompt. Since the obstacle information depends on the roll-out of the system, we construct
this part of the prompt online after a deadlock has been detected. At any given time instant £, > 0
when the VLM is queried, the environment state is constructed via a base 64 encoded JPEG image
that includes the location of the agents, their goals, and the obstacles seen by the MRS so far for
all t < t, whose information comes from the LiDAR data. An example input image to the VLM
is given in Figure 1. To assist the VLM with the precise locations of the agent and the goals, we
provide their text description as well.

Desired output Finally, we describe the desired output, both in terms of content and for-
mat. The high-level planner is responsible for choosing a leader and a set of waypoints for the

GARG NAIR ZHANG ARKIN FAN

leader. To help constrain the model’s output and enable consistent output parsing, we request
the generated response to be formatted as a JSON object with an expected output of the form
{“Leader” : Id, “Waypoints” : [[z1,y1],. .., [zp,yP]]}.

4.2. Distributed low-level policy

The high-level planner provides the leader and the waypoint information to the low-level controller.
One desirable property of the low-level controller is scalability and generalizability to new envi-
ronments (i.e., changing the number of agents and obstacles) while keeping the MRS safe and
connected. Given the leader and goal information in terms of the immediate waypoint to follow, the
low-level controller synthesizes an input u; to maintain connectivity, keep the system collision-free,
and drive the system trajectories toward its goals (and in the case of the leader robot, toward its
waypoint). While any low-level controller that can satisfy the requirements from Problem 1 can
be used, we extend the distributed graph-based policy from (Zhang et al., 2025b). Since the main
focus of this paper is on the high-level planner, the details of the low-level controller are provided
in Appendix D of the supplementary material.

I Scene Interpretation Accuracy (%) [Waypoint Generation Accuracy (%)

100

Accuracy (%)
E 3 g

[
(=]

0 GPT5 GPT5Low GPT40 GPT40 GPT4 Claude Claude Claude3 Claude3 Claude3 GPTS5 GPT4 GPT3.5 Claude 3

mini Opus 4.1 Sonnet 3.5 Haiku Opus Sonnet Haiku
Figure 3: Quantitative accuracy of different VLMs in scene understanding and feasible waypoint-
generation capability across 100 environments.

5. Spatial reasoning capability of VLLMs

The performance of our proposed framework depends on the ability of VLMs to reason about struc-
tured visual environments, if only implicitly, while generating path-planning strategies. Misun-
derstandings of the environment state can propagate to planning errors. Therefore, we evaluate
the performance of VLMs to understand the environment state and to generate feasible waypoints
within that state. We randomly generate one hundred 10x10 grid environments, each of which con-
sists of agents, goals, and polygonal obstacles that are encoded with integer-value vertices. To test
environment understanding, a VLM is tasked with reporting the coordinates for each entity (e.g.,
agent, goal, or obstacle). To test feasible waypoint generation, a VLM (or LLM using a text-based
encoding of the environment) is tasked with generating a feasible sequence of waypoints whose
straight-line connectivity satisfies the constraints of staying within the bounds and avoiding any
obstacles (see Appendix C for the prompts and an example scenario used for this evaluation).
Results for both evaluations are reported in Figure 3. The blue bars show the average accuracy
of various VLM models on the task of scene interpretation over 100 environments, where accuracy

HIGH-LEVEL PLANNING USING VLMSs

is defined as the percentage of correctly identified locations of the obstacles’ vertices, the agent, and
the goal (within a tolerance of 0.5 units). The red bars indicate the accuracy of various VLM and
LLM models in the task of generating feasible waypoints. As can be seen from Figure 3, among
various VLM, it is observed that the accuracy in correctly identifying the spatial configuration of an
environment is generally higher for newer models (e.g., GPT-5>GPT40>GPT40-mini>GPT-4).
A similar trend is observed for the accuracy of correct waypoint generation as per the given con-
straints (with the exception of GPT-4-Turbo). For the task of waypoint generation, LLMs gener-
ally performed worse than VLMs, even when comparing the performance of the same model used
asa VLM (e.g., GPT-4-Turbo or GPT-5), which suggests that the vision modality of foundations
is better for spatial reasoning. These preliminary results provide a preview of what we might ex-
pect when these models are used as part of the hierarchical control framework for motion planning,
which we evaluate in the next section.

6. Evaluations

The objective of these numerical evaluations is to assess the viability of foundation models as real-
time, high-level planners and to compare their performance with traditional, grid-based planners.
To the best of the authors’ knowledge, there is no work that solves this problem end-to-end. Hence,
we fix the hierarchical architecture of the control framework and test the viability of the foundation
models as high-level planners in comparison to grid-based planners while using the same low-level
controller. To assess the effectiveness of the high-level planner, we perform extensive experiments
on a variety of MRS environments to measure the performance in terms of i) the reach rate or the
percentage of agents reaching their goals; ii) the number of high-level interventions needed during
the rollout; iii) the time taken in calling the high-level planner; and iv) the tokens used in each
intervention (for assessing the cost-efficiency of using proprietary pre-trained foundation models).

6.1. Experiment setup

We perform experiments on two sets of environments, namely structured hand-crafted environments
(termed “Room”) with a small number of agents, i.e., N = 5, and unstructured maze-like environ-
ments (termed “Maze”’) with a large number of agents, i.e., N = 25 or 50 (see Figure 4).

Figure 4: “Room” environment with N = 5 (left) and “Maze” environment with N = 25 (right).
The agents are shown in blue, the goals in green, and the obstacles in red color.

“Room” environments The “Room” represents an enclosed warehouse or an apartment sce-
nario where the agents are required to reach another part of the environment while remaining inside
the boundary and avoiding collisions with walls and other obstacles in the room. The agents start in
one corner of the room and propagate their way through the environment to reach their respective

GARG NAIR ZHANG ARKIN FAN

destinations. The obstacles in the room environment are designed so that the low-level GCBF+
control policy invariably gets stuck in a deadlock, making it essential to use a high-level planner.
We generate 20 environments with random angles, lengths, and locations of the walls.

“Maze” environment The “Maze” environment consists of /V initial and goal locations and
M rectangular obstacles of randomly generated sizes and locations. These environments capture a
variety of real-world scenarios, such as narrow corridors and a large number of unknown obstacles,
that MRS might encounter. For testing, we use 20 Maze environments with N = 25 and M = 100,
and 11 Maze environments with N = 50 and M = 375.

The two sets of environments considered in the evaluations represent a large variety of operat-
ing environments for multi-robot systems. In particular, the first set of environments, the “Room”
environments, represent structured environments where obstacles and “walls” might have a struc-
ture (although unknown) and can lead to a particular type of deadlock situation. On the other hand,
the randomly generated “Maze” environments represent unstructured environments where the (un-
known) obstacles can be of random shapes and sizes. Note that the locations, shapes, and sizes of
the obstacles are not known to the MRS a priori, and the obstacles are detected by an on-board sen-
sor such as LiDAR. An unknown obstacle environment with arbitrary shapes and sizes of obstacles
requires real-time planning upon deadlock detection.

Foundation models and baselines We use various VLM models from Anthropic and OpenAl
as candidates for the high-level planner. We also utilize various LLM models as baselines to evaluate
which modality of the foundation best suits the problem. In all the generated environments, the low-
level controller leads to a deadlock, and as a result, the reach rate for just the low-level controller is
exactly 0. Hence, we do not include that as a baseline. Additionally, we use an A*-based high-level
planner (Hart et al., 1968) and a “Random” high-level planner where the leader and the waypoints
are drawn randomly, as baselines for comparison. For the A* planner, we represent the working
environment of the robots as a 2D grid filled with all the obstacles seen by the MRS by the time the
planner is queried. We again emphasize that there is no baseline method that can solve this complete
problem and that the A* planner is used to find a set of waypoints (similar to the foundation models),
which are then followed using a low-level controller.

Roll-out for evaluation We roll out MRS trajectories for a fixed number of steps 7' = 3000
for Room environments, T = 4000 for the Maze environment with N = 25, and T = 5000 for the
Maze environment with N = 50. As discussed in Section 4, the high-level planner intervenes when
the MRS is stuck in a deadlock, as defined by the minimum average speed criteria. We use d,, = 0.2
and d; = 0.4 as the threshold to define deadlocks. Once the high-level planner assigns a leader, the
MRS remains in the same leader-follower configuration for 77 = 100 steps. This helps prevent
Zeno behaviors and sets an upper bound on the frequency at which the foundation model is queried.

6.2. Results

Figure 5 plots the various performance criteria for each of the test environments for the considered
foundation models and baseline method. Below, we summarize our findings.

Foundation models are more effective than the grid-based and random method: An im-
portant feature we note from the experiments is that foundation models do not require any in-context
examples to achieve such high performance. This corroborates our motivation for using these mod-
els due to their low data requirement. When it comes to comparison to the A*-based planner, it
is evident from all environments that foundation models achieve better performance in terms of a

HIGH-LEVEL PLANNING USING VLMSs

Results for “Room” environments with 5 agents

GPTS — . —ll— o ©° HilHe
GPT5-Low — . Hih © 1]
GPT40 — I 1 t
«», GPT40-mini i @ L3 ol
= GPT4 I | R ° i 1
g Opus4.l [i e 1
Sonnet 3.5 — - o (]]
Haiku 3 —aH (] |
Opus 3 @ el —- i 1
Sonnet 3 [| e B ° 9 b
» GPTS — . HIH o HIH °
= GPT4 — . b L
j GPT3.5 . ° t Ll
Opus3 [[| e oo) ool
Random —— . 1 1
A* — . 1 1
0.00 025 050 0.75 1.00 10 20 30 0 50 100 150 0 5000 10000 15000
Reach rate Number of calls Time (s) Tokens
Results for “Maze” environments with 25 agents
GPT5 —— ° —— . HH
GPT5-Low! —am— il © © L3
GPT4o! — - (]]
« GPT40-mini — ° (] b
= GPT4 : .)) 1
= Opus 4.1 . HEl— B ®
> Sonnet3.5 |+l o [1
Haiku 3 +— 4 1
Opus 3 [[1 » b
Sonnet 3 [— [[
) GPT5 — . o i g —
= GPT4 . — ° 3 HEH o o
= GPT3.5 . i b o
= Opus3 ¢ —— - o HEl
Random ¢ o —lh 1 1
A* [— H I
0.00 025 050 0.75 1.00 0 100 0 50 100 0 5000 10000
Reach rate Number of calls Time (s) Tokens
Results for “Maze” environments with 50 agents
GPT5 { HIEH — HH
GPTS5-Low HlH o @ e
GPT4o — ® ® [1
«» GPT40-mini H. i]
= GPT4 : — - I 1
§ Opus 4.1 B 2 [] ° []
Sonnet 3.5 i HH o HH 3
Haiku 3 HhH o th 1]
Opus 3 ¢ —HEm— L] ®
Sonnet 3 . HEB—i (2 bo
§ GPT5 Hil— . ofo
= GPT4 — ° [s
- Opus3 ¢ il o offo
Random ¢ o Hib]
A¥ V- o fH
0.00 025 050 075 1.000 25 50 75 0 25 50 75 10° 10*
Reach rate Number of calls Time (s) Tokens

Figure 5: From left to right: 1) The bar shows the ratio of the trajectories where all the agents
reach their goals over the total number of trajectories, and the orange dot shows the ratio of agents
that reach their goals over all agents; 2) Box plot of the number of times the high-level planner
intervened; 3) Box plot of the time spent for each high-level planner intervention; and 4) Box plot
for the input + output tokens per intervention. In the box plots, the median values are in orange and
the mean values are in green.

higher average reach rate. For the small-scale Room environments, the mean reach rate for A* across
20 test environments is higher than VLMs but is lower than all of the LLMs. For the large-scale
Maze environments, the mean reach rate for A* is lower than most of the VLMs. The computa-
tion time of A* increases as the size and number of obstacles increase, while that of foundation
models remains the same. Note also that a randomly chosen leader, along with randomly chosen
waypoints, yields a reach rate of less than 0.5 in all cases, with its performance deteriorating as the

GARG NAIR ZHANG ARKIN FAN

number of agents increases. This illustrates that the foundation models provide better inference than
a randomly generated one, resulting in a higher completion rate.

VLMs are cheaper and faster than LLMs for large-scale MRS: It is evident that the average
number of total tokens required for image-based VLMs remains similar (= 1000) across the various
environments (see the rightmost column of Figure 5). On the other hand, the tokens for text-based
LLMs increase with the increased complexity of the environment in terms of the number of obsta-
cles. This directly affects the cost of using proprietary foundation models, as well as the speed of
inference. This is also evident when we compare the time of intervention for the same model used
as VLM and LLM (e.g., GPT-4 VLM and GPT-4 LLM). Furthermore, the variance in the aver-
age tokens used by VLMs across experiments is much lower than that for LLMs. This is because,
as the MRS collects more information about its environment (i.e., observes newer obstacles), the
text-based description becomes longer. On the other hand, all the new information can be plotted
on the same-sized graphic, resulting in the same-sized input to the VLMs. This feature of VLMs
is advantageous as it provides predictable costs, runtime, and scalability, especially for large-scale
real-time systems. One way of reducing the prompt size for LLMs is to use a portion of the available
information instead of the complete available information about the obstacles. We perform ablation
on the available information and report the results in Appendix E in the supplementary material.

Reasoning at the cost of time and money: For GPT-5 model, we compared performance of
the model with “reasoning-effort” low and medium (plotted as “GPT-5-VLM-Low” and “GPT-5-
VLM” in Figure 5). It is clear that higher reasoning requires significantly longer inference time (up
to 4 times), as well as higher output tokens (up to 2 times), but without a clear trend in performance
improvement. The performance in terms of the reach rate is the same or even better when the
reasoning effort is set to low for smaller environments, and is only slightly worse for the large
environment. The large reasoning model, such as GPT—-5, generates extra reasoning tokens with its
main response, resulting in a higher cost and time. However, as evident from the experiments, it
performs well even when the reasoning effort is set to low, making it much faster and cost-efficient.

7. Conclusions and Discussion

In this work, we test the hypothesis that VLMs can be used as high-level planners for deadlock
resolution in MRS with safety and connectivity constraints. We perform extensive experiments on
a variety of foundation models to understand their utility in this task. In comparison to grid-based
planners, the foundation models generally performed better, resulting in an affirmative answer to
our hypothesis. Our experiments also provide interesting observations and insights on the relative
performance of foundation models of various modalities (LLMs and VLMs) in terms of their spa-
tial reasoning capabilities as well as in online planning for small- and large-scale MRS problems,
as well as their time and cost efficiency. The high performance of the zero-shot foundation models,
particularly newer and larger models such as GPT-5 with low reasoning effort, across various MRS
environments is good evidence that they are promising high-level planners for online motion plan-
ning problems. Recently, there has been an increasing interest in automatic prompt optimization
for black-box foundation models to find the best prompt design for a given task (Guo et al., 2024;
Wang et al., 2024; Fernando et al., 2023) with results showing significant performance improvement
over human-designed prompts. Future work includes applying such techniques to the problem of
deadlock resolution to maximize the performance of VLMs as a high-level planner.

10

HIGH-LEVEL PLANNING USING VLMSs

References

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,
Leonidas Guibas, and Fei Xia. Spatialvim: Endowing vision-language models with spatial rea-
soning capabilities. arXiv preprint arXiv:2401.12168, 2024a.

Yuda Chen, Meng Guo, and Zhongkui Li. Deadlock resolution and recursive feasibility in mpc-
based multi-robot trajectory generation. /[EEE Transactions on Automatic Control, 2024b.

Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile
sensing networks. IEEE Transactions on robotics and Automation, 20(2):243-255, 2004.

Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A survey of
neural lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions on
Robotics, 39(3):1749-1767, 2023.

Joris Dinneweth, Abderrahmane Boubezoul, René Mandiau, and Stéphane Espié. Multi-agent rein-
forcement learning for autonomous vehicles: a survey. Autonomous Intelligent Systems, 2(1):27,
2022.

Vishnu Sashank Dorbala, James F. Mullen, and Dinesh Manocha. Can an embodied agent find
your “cat-shaped mug”? llm-based zero-shot object navigation. IEEE Robotics and Automation
Letters, 9(5):4083—4090, 2024.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
taschel. Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Jensen Gao, Bidipta Sarkar, Fei Xia, Ted Xiao, Jiajun Wu, Brian Ichter, Anirudha Majumdar, and
Dorsa Sadigh. Physically grounded vision-language models for robotic manipulation. arXiv
preprint arXiv:2309.02561, 2023.

Kunal Garg, Songyuan Zhang, Oswin So, Charles Dawson, and Chuchu Fan. Learning safe control
for multi-robot systems: Methods, verification, and open challenges. Annual Reviews in Control,
57:100948, 2024.

Jaskaran Grover, Changliu Liu, and Katia Sycara. The before, during, and after of multi-robot
deadlock. The International Journal of Robotics Research, 42(6):317-336, 2023.

Jaskaran Singh Grover, Changliu Liu, and Katia Sycara. Deadlock analysis and resolution for
multi-robot systems. In Algorithmic Foundations of Robotics XIV: Proceedings of the Fourteenth
Workshop on the Algorithmic Foundations of Robotics 14, pages 294-312. Springer, 2021.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoging Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=2G3RaNIs08.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107,
1968.

11

https://openreview.net/forum?id=ZG3RaNIsO8

GARG NAIR ZHANG ARKIN FAN

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor
Mordatch, Sergey Levine, Karol Hausman, et al. Grounded decoding: Guiding text generation
with grounded models for embodied agents. Advances in Neural Information Processing Systems,
36, 2024.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqgiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In ICML 2022 Workshop on Knowledge Retrieval and
Language Models, 2022. URL https://openreview.net/forum?id=6p3AuaHAFiN.

Minae Kwon, Hengyuan Hu, Vivek Myers, Siddharth Karamcheti, Anca Dragan, and Dorsa Sadigh.
Toward grounded social reasoning. arXiv preprint arXiv:2306.08651, 2023.

Baiyu Li and Hang Ma. Double-deck multi-agent pickup and delivery: Multi-robot rearrangement
in large-scale warehouses. IEEE Robotics and Automation Letters, 8(6):3701-3708, 2023. doi:
10.1109/LLRA.2023.3272272.

Hang Ma, Wolfgang Honig, Liron Cohen, Tansel Uras, Hong Xu, TK Satish Kumar, Nora Ayanian,
and Sven Koenig. Overview: A hierarchical framework for plan generation and execution in
multirobot systems. IEEE Intelligent Systems, 32(6):6—12, 2017.

Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan
Huang. Sqa3d: Situated question answering in 3d scenes. In International Conference on Learn-
ing Representations, 2023.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pages 281-297. Oakland, CA, USA, 1967.

Farhad Mehdifar, Charalampos P Bechlioulis, Farzad Hashemzadeh, and Mahdi Baradarannia. Pre-
scribed performance distance-based formation control of multi-agent systems. Automatica, 119:
109086, 2020.

Mehran Mesbahi and Magnus Egerstedt. Graph theoretic methods in multiagent networks. In Graph
Theoretic Methods in Multiagent Networks. Princeton University Press, 2010.

Allen Z Ren, Jaden Clark, Anushri Dixit, Masha Itkina, Anirudha Majumdar, and Dorsa Sadigh.
Explore until confident: Efficient exploration for embodied question answering. arXiv preprint
arXiv:2403.15941, 2024.

Dhruv Shah, Michael Robert Equi, Blazej Osiniski, Fei Xia, Brian Ichter, and Sergey Levine. Nav-
igation with large language models: Semantic guesswork as a heuristic for planning. In Confer-
ence on Robot Learning, pages 2683-2699. PMLR, 2023a.

Dhruv Shah, Btazej Osiniski, Sergey Levine, et al. Lm-nav: Robotic navigation with large pre-
trained models of language, vision, and action. In Conference on robot learning, pages 492—-504.
PMLR, 2023b.

12

https://openreview.net/forum?id=6p3AuaHAFiN

HIGH-LEVEL PLANNING USING VLMSs

Rohan Sinha, Amine Elhafsi, Christopher Agia, Matthew Foutter, Ed Schmerling, and Marco
Pavone. Real-time anomaly detection and reactive planning with large language models. In
Robotics: Science and Systems, 2024.

Yulun Tian, Katherine Liu, Kyel Ok, Loc Tran, Danette Allen, Nicholas Roy, and Jonathan P How.

Search and rescue under the forest canopy using multiple vavs. The International Journal of
Robotics Research, 39(10-11):1201-1221, 2020.

Li Wang, Aaron D Ames, and Magnus Egerstedt. Safety barrier certificates for collisions-free
multirobot systems. IEEE Transactions on Robotics, 33(3):661-674, 2017.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. In The Telfth International Conference on Learning Representations,
2024.

Licheng Wen, Xuemeng Yang, Daocheng Fu, Xiaofeng Wang, Pinlong Cai, Xin Li, Tao Ma, Yingx-
uan Li, Linran Xu, Dengke Shang, et al. On the road with gpt-4v (ision): Early explorations of
visual-language model on autonomous driving. arXiv preprint arXiv:2311.05332, 2023.

Peter R Wurman, Raffaello D’ Andrea, and Mick Mountz. Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. Al magazine, 29(1):9-9, 2008.

Quanting Xie, So Yeon Min, Pengliang Ji, Yue Yang, Tianyi Zhang, Aarav Bajaj, Ruslan Salakhut-
dinov, Matthew Johnson-Roberson, and Yonatan Bisk. Embodied-rag: General non-parametric
embodied memory for retrieval and generation, 2024. URL https://arxiv.org/abs/
2409.18313.

Michael M Zavlanos and George J Pappas. Distributed connectivity control of mobile networks.
IEEE Transactions on Robotics, 24(6):1416-1428, 2008.

Songyuan Zhang, Kunal Garg, and Chuchu Fan. Neural graph control barrier functions guided
distributed collision-avoidance multi-agent control. In 7th Annual Conference on Robot Learning,
2023.

Songyuan Zhang, Oswin So, Mitchell Black, and Chuchu Fan. Discrete GCBF proximal policy
optimization for multi-agent safe optimal control. In The Thirteenth International Conference on
Learning Representations, 2025a.

Songyuan Zhang, Oswin So, Kunal Garg, and Chuchu Fan. GCBF+: A neural graph control barrier
function framework for distributed safe multi-agent control. IEEE Transactions on Robotics, 41:
1533-1552, 2025b.

13

https://arxiv.org/abs/2409.18313
https://arxiv.org/abs/2409.18313

GARG NAIR ZHANG ARKIN FAN

Supplementary Material

Appendix A. Detailed problem formulation

We start with describing the dynamics of the individual robots (referred to as agents henceforth),
and then, we list the individual as well as the team objective for the system. The agent dynamics
are given by @; = f(x;) + g(x;)u;, where f, g are locally Lipschitz continuous functions with
x; € X C R? denoting agents’ state space and u; € U C R™ the control constraint set for
ie{l,2,...,N }.1. The state x; consists of the position p; € R? in the global coordinates. The
state space X’ consists of stationary obstacles O; C R? for [€ {1,2,..., M}, denoting walls,
blockades and other obstacles in the path of the moving agents. Each agent has a limited sensing
radius & > 0 and the agents can only sense other agents or obstacles if it lies inside its sensing
radius. The agents use LiDAR to sense the obstacles, and the observation data for each agent
consists of 1,y evenly-spaced LiDAR rays originating from each robot and measures the relative
location of obstacles. We denote the j-th ray from agent ¢ by y](-z) € Xforje {1,2,...,Nrays}
that carries the relative position information of the j—th LiDAR hitting point to agent 7, and zero

padding for the rest of the states.

The time-varying connectivity graph G(¢) = (V(t), £(t)) dictates the network among the agents
and obstacles. Here, V(t) = V* U V°(t) denotes the set of nodes, where V* = {1,2,..., N}
denotes the set of agents, V°(¢) is the collection of all LiDAR hitting points at time ¢ > 0, and
E(t) € V*(t) x V(t) denotes the set of edges, where (i,j) € £(t) means the flow of information
from node j to agent i. We denote the time-varying adjacency matrix for agents by A(t) € RV,
where A;;(t) = 1if (4,5) € £(t),i,7 € V*, and 0 otherwise. The set of all neighbors for agent i
is denoted as N;(t) := {j | (i,7) € E(t)}, while the set of agent neighbors of agent i is denoted as
NE(t) == {j | A;ij(t) = 1}. The MRS is said to be connected at time ¢ if there is a path between
each pair of agents (i, j),Vi,j € V* i # j at t. One method of checking the connectivity of the
MRS is through the Laplacian matrix, defined as L(A(t)) := D(t) — A(t), where D(t) is the degree
matrix defined as D;;(t) = > A;j(t) when ¢ = j and O otherwise. From (Mesbahi and Egerstedt,

J
2010, Theorem 2.8), the MRS is connected at time ¢ if and only if the second smallest eigenvalue
of the Laplacian matrix is positive, i.e., Ao(L(A(t))) > 0.

Appendix B. Leader-follower and temporary goal assignment

Here, we present the mechanism for leader-follower assignments for a large-scale MRS. As dis-
cussed in Section 4, for large-scale MRS, i.e., N > Nj; = 10, a main leader is assigned for the
MRS, and sub-leaders are assigned for each of the clusters. The agents in clusters will undergo a
leader-follower formation with their respective sub-leaders while these sub-leaders will follow the
main leader. The complete leader-follower assignment algorithm is given in Algorithm 1.

1. In this work, we consider robots modeled using single integrator dynamics operating in 2D plane, i.e., ny = n, = 2

14

HIGH-LEVEL PLANNING USING VLMSs

Algorithm 1: Leader and temporary goal assignment
Data: {p;}, K, din, N, Nys
1
Result: [/, {lx}, {P%e(ﬁp

/% Find the main leader

Iy = argmin ||p; —pfoal||

/* Find the clusters
if N < Nj; then

RUAED!
else

| {V} =kmeans({p;}, K)
end

/* Find leaders for each cluster
for k in range(K) do

|k = argmin;cye minjeye, [|p; — pj
end

/+ Assign temporary goals
fork € [1,2,---, K] do

Viead (k) = {li}

cluster leader

goal _
ptemp,l;C =Dy

for i € range|V*| do

follower
ifollow = arg Miljeya\yy (k) Milev, 4 (k) 1P — 25l
/* Find leader for it
Kiead = arg minjevlead(k) Hpifouow - pj”
/* Assign temporary goal to it
. 1
if (i — ngfjow | > dinin then

goal o
‘ pifonow,temp - pklead
else
‘ coal __goal
Pionow temp = Piggpion,
end

/* Update the set of leaders
Viead (k) = Viead (k) U {ifoliow }

end
end

15

/* Initial set of leaders to be followed in cluster V¢

/* Assign main leader’s location as the temporary goal for

/+ Find the closest agent to the set of leaders as the new

*/

*/

*/

GARG NAIR ZHANG ARKIN FAN

Appendix C. VLM and LLM prompts

C.1. Task and output description prompts

The task description prompts used for VLMs are given in Figure 6 while those used for LLMs are
given in Figure 7.

Figure 7: Description prompts used for textbased (i.e., LLs) high-level planners.

C.2. Environment description

The environment description prompts used for VLMs are given in Figure 8 while those used for
LLM baselines are given in Figure 9. For VLMs, an additional text prompt is appended at the end
with the location of the agent(s) and goal(s) provided in the image prompt to aid the VLM with
waypoint assignment.

3] -iijlln .
jj L W EcnluauL

Figure 8: Environment prompt for VLM for “Maze env1r0nment with N = 50 and M = 375.

16

HIGH-LEVEL PLANNING USING VLMSs

.12,

Figure 9: Environment prompt for LLM for “Maze” environment with N = 50 and M = 375.

10

10

e Agent

® Agent Goal
oa

O

* Goal 8] ————

%

L

(@)}

L

L
[J
o

\S]

L

O = N WA U ®
hn

()
—
SR
w4
o
A
o
31
m<
O
[u—
(e
(=]
[e)
N
N
QA
m<

10

(@) (b)
Figure 10: (a) Grid environment with randomly generated obstacles and agent-goal locations for
assessing foundation models’ spatial-reasoning capability and (b) The obstacles, agent and goal
locations as well as the waypoints generated by GPT-5 with low reasoning effort.

C.3. Output of foundation models

The output of the LLM or VLM is a JSON object. As an example, for the input in Figure 8, the out-
put from Claude3-Opus VLM is: {“Leader” : 1, “Waypoint” : [[2.8,4.5], [5.5,4.5],[5.5, 7.9]] }.

C.4. Spatial reasoning prompts

An example environment used for assessing models’ spatial reasoning is given in Figure 10. The
prompts used for these evaluations are provided in Figure 11.

Appendix D. Low-level control policy

Any low-level controller that can satisfy the requirement from Problem 1 can be used as the low-
level control policy, such as one from a distributed CBF-QP method (Wang et al., 2017) or a learned
control policy. Since the low-level control policy is supposed to be distributed with low computa-
tional complexity, we choose to use the recently proposed learning-based GCBF+ controller from
(Zhang et al., 2025b). Given sensing radius R and safety distance r, define Ny — 1 € N as the
maximum number of neighbors that each agent can have while all the agents in the neighborhood
remain safe. Define Aj as the set of N, closest neighboring nodes to agent 7+ which also includes

17

GARG NAIR ZHANG ARKIN FAN

5, AND Waypo:
. within [
order CCH. Snap imiard if needed.

,»10.0} and within [0,1e].
,10] and lies in § = {0.6,6. _e}. . i a unique rtices starting at bx

unique y’s; snap inward - . in set ; nt inside obstacle:
gonals. i cle edge; ki 20.2 margin.
FINAL OUTPUT
Return ONLY t ompact JSON between m
FINAL OUTPUT
Return ONLY this JSON between markers: SHHOUTPUT STARTERS
7

##HOUTPUT_START###

1 : ts": [[x@,y8], [XL,y1l,-.-
} }
#HHOUTPUT_END#H## H#HHOUTPUT_END###

(@) (b)
Figure 11: Prompts used for (a) scene-understanding and (b) waypoint generation tasks for spatial
reasoning assessment.

agent ¢ and Z . as the concatenated vector of z; and the neighbor node states with fixed size IV that

is padded with a constant vector if \J\m < N;. Considering only collision avoidance constraints,
the safe set Sy € X'V can be defined as:

sv={rea| (|
A(, min o=l > 2r) }.

where Z denotes the joint state vector for the MRS. The unsafe, or avoid set can be defined accord-
ingly as Ay = XV \ Sy. Considering the smoothness of GCBF, we impose the condition that for
a given agent i € V,, a node j where ||p; — pj|| > R does not affect the GCBF h. Specifically,
for any neighborhood set NV;, let /\/fR denote the set of neighbors in A that are strictly inside the
sensing radius R as

‘ > Vie Vi V) e nrays)

= {j v —pill <R, j € Ni}. (1)
Using these notations, GCBF is defined in (Zhang et al., 2025b) as:
Definition 1 (GCBF) A continuously differentiable function h : XM — R is termed as a Graph

CBF (GCBF) if there exists an extended class-K function o and a control policy 7; : XM — U for
each agent i € V,, of the MAS such that, for all & € X with N > M,

h@n) + a(h(zn,)) 20, VieV, @)
where ah
= aiN (f(z5) + g(x5)uy), 3)
JEN; J

for uj = m;(Zn;), and the following two conditions hold.:

* The gradient of h with respect to nodes R away is 0, i.e.,

%(@\fi) =0, VjeN;\NF @
J

18

HIGH-LEVEL PLANNING USING VLMSs

* The value of h does not change when restricting to neighbors that are in J\/fR, ie.,
h(Zn;) = h(foR). 5)

It is proved in (Zhang et al., 2025b, Theorem 1) GCBF certifies the forward invariance of its
0-superlevel set under control inputs from:

U = {a cu ‘ Min,) + a(h(Za;)) >0, Vi € Va}.

We start with this formulation and modify it to additionally account for the connectivity requirement,
as explained below.

Following (Zhang et al., 2025b), we use graph neural networks (GNN) to parameterize GCBF.
For agent 4, the input features of the GNN contain the node features v; and v; for j € N, and edge
features e;; for j € N;. The node features v; € R encode information specific to each node. In
this work, we take p,, = 3 and use the node features v; to one-hot encode the type of the node as
either an agent node, goal node or LiDAR ray hitting point node. The edge features e;; € RPe,
where p. > 0 is the edge dimension, are defined as the information shared from node j to agent 1,
which depends on the states of the nodes ¢ and j. Since the safety objective depends on the relative
positions, one component of the edge features is the relative position p;; = p; — p;. The rest of the
edge features can be chosen depending on the underlying system dynamics, e.g., relative velocities
for double integrator dynamics. However, apart from the safety constraints considered in (Zhang
et al., 2025b), we also consider the connectivity constraints. Therefore, the design of the node
features and edge features needs to be modified for adding the connectivity information. To this
end, given the desired connectivity of the MRS in terms of the desired adjacency matrix A? where
the desired adjacency matrix is designed such that the MRS is connected, we add the connectivity
information in the edge features of GCBF. In particular, we append the edge features with [0, 1] " in
e;; if the agents (7, j) are required to be connected, i.e., Afj =1, and [1,0]" if they are not required
to be connected, i.e., Aglj = 0. Furthermore, we add the connectivity constraint in the GCBF by
redefining the safe and the unsafe sets corresponding to the required connectivity, such that the safe
set is defined as

5= {rea”| (|
A, min, I —pil>20) A

(max ||p;i —pj| < R) } (6)
z',jeva,A;.ijzl

> 7, Vi € Vo, V) € Nyays)

Consequently, the unsafe, or avoid set with the connectivity constraint is defined as A$, = AN \ S
Since the GCBF £ certifies the forward-invariance of its O-superlevel set, the safety and connectivity
constraints are satisfied.

The training framework is the same as (Zhang et al., 2025b). In the original GCBF+ training
framework, it is essential that the initial and goal locations are safe. In the current work, we also
need to make sure that the initial conditions and the goal locations sampled for training the GCBF
satisfy the MRS connectivity condition, in addition to the safety condition in the original GCBF+
framework. To this end, we sample the initial and goal locations such that their corresponding

19

GARG NAIR ZHANG ARKIN FAN

graph topology are connected, and define the desired adjacency matrix A% = A(0). The same loss
function from (Zhang et al., 2025b) is used to train the distributed control policy, with the safe set
definition modified as per (6).

Appendix E. Ablation studies

E.1. Effect of partial environment information

GPTS5 ¢ HIEH — . HH
Few HiH HH
GPT4o! —
Few I . rEmWR— o b
GPT40-mini — Hh]
Fewliii o e B . 5
GPT4 ¢ —
Fewlmmwe — —wm b
Opus 4.1 N
Fewiiio oo o oHee— L N
Sonnet 3.5 | HEH
Few { HH

VLMs

Haiku 3 HiH o HH 1
Fewli oo - e] N S
Opus 3 ‘ — h L3
Fewbiiiiiiimiii» . VEmEm— . N
Sonnet 3 . . b
Few ‘ — b &
HEl—
HIEllH

GPTS5
Few
GPT4 — ®] Hi
Few ¢ — .|
Opus 3 ¢ — I
Few ¢ e] 1
HI—
—

LLMs

A*
Few)
0.00 025 0.50 0.75 1.00 20 40 60 0 25 50 75 10° 10*
Reach rate Number of interventions Time (s) Tokens

Figure 12: Performance of various high-level planners for “Maze” environments with N = 50
agents with all known environment information and partial information (the case with all partial
environment information is indicated with the suffix “-Few”, e.g., “GPT5-VLM-Few”). From left
to right: 1) The bar shows the ratio of the trajectories where all the agents reach their goals over the
total number of trajectories, and the orange dot shows the ratio of agents that reach their goals over
all agents; 2) Box plot of the number of times the high-level planner intervened; 3) Box plot of the
time spent for each high-level planner intervention; and 4) Box plot for the input + output token per
intervention. In the box plots, the median values are in orange and the mean values are in green.

We evaluate the effect of providing partial environment information to the foundation models to
study the trade-off between cost (in terms of the tokens) and performance. Figure 12 compares the
performance of querying a given foundation model with all collected observations of obstacles and
querying it with only the most recent observations of obstacles (50 for LLMs and 100 for VLMs).
The rationale behind choosing the last few observations is twofold: 1) it reduces the number of
tokens in the prompt provided to the foundation model, thereby reducing the time and cost per
query, and 2) in the considered environments, the initially observed obstacles do not play much role
in determining the waypoints for the leader.

GPT40-VLM, GPT-5-LLM, and GPT4-LLM perform better with partial information We
can observe that, with the exception of GPT-40 VLM, GPT-5 LLM, and GPT4 LLM, the perfor-
mance drops when partial information is used. It is not entirely clear why GPT-40 VLM, GPT-5
LLM, and GPT4 LLM perform better with partial information. Our understanding is that the per-

20

HIGH-LEVEL PLANNING USING VLMSs

formance of these models is poor with the complete information due to their inability to utilize the
provided information to make a good decision for this problem.

Smaller models perform better with partial information From the results on Claude3-Sonnet-
VLM, we can observe that the performance of a smaller model (in terms of the model parameters)
improves when partial information is used. On the other hand, for larger models like GPT4-VLM
and Claude3-LLM, the performance drops when only the partial information is used. It provides
evidence in support of the intuition that smaller models do not perform well when more information
is provided.

Quality of high-level commands deteriorates with less information As discussed in the
main paper, the number of high-level planner interventions is generally inversely proportional to
the quality of the plan they suggest. As evident from the figure, the number of interventions with
partial information is, on average, more than the case when all the known information is provided
to the foundation models. We infer that the quality of the plan provided drops as the amount of data
provided to the foundation models decreases.

Inference cost and time improves significantly As expected, the average query time to foun-
dation models (particularly LLMs) reduces significantly when using partial information. This pro-
vides a good trade-off metric for the user to determine how much data they should provide to the
LLMs based on the desired level of performance and how much delay can be tolerated for a partic-
ular problem at hand. As stated in the beginning of the section, the motivation of conducting this
ablation study is to see the cost-efficiency of providing partial information to the foundation mod-
els. While the average number of tokens used for VLMs does not change, there is a significant (at
least an order of magnitude) reduction in the case of LLMs. Since the number of tokens is directly
proportional to the cost associated with querying the proprietary foundation models, this trade-off
study illustrates that an optimal amount of information can be provided to the foundation models to
obtain desirable performance within a given cost and time budget.

21

	Introduction
	Related work
	Problem formulation
	Hierarchical control architecture
	Foundation model-based high-level planner
	Distributed low-level policy

	Spatial reasoning capability of VLMs
	Evaluations
	Experiment setup
	Results

	Conclusions and Discussion
	Detailed problem formulation
	Leader-follower and temporary goal assignment
	VLM and LLM prompts
	Task and output description prompts
	Environment description
	Output of foundation models
	Spatial reasoning prompts

	Low-level control policy
	Ablation studies
	Effect of partial environment information

