
HYBRID SYSTEMS NEURAL CONTROL

Supplementary Materials

Appendix A. Proof for Theo. 6

From Vi(xi, pi) ≤ ci(pi) we know that the entering state xi is within the maximum ϵ-stable level set
of equilibrium point x∗, hence the entering state xi is within the ϵ-RoA of mode i. Next, we show
that the next entering state xj = hi(x̄i, u; pi, pj) is also within the ϵ-RoA of mode j.

Since xi is within ϵ-RoA of mode i, we know ||x̄i − x∗|| ≤ ϵ. Then from αj ||x − x∗|| ≤
Vj(x, pj) ≤ βj ||x− x∗|| we have

Vj(xj , pj) = Vj(hi(x̄i, u; pi, pj), pj)

(Definitions of jump maps and entering/exiting states)

≤ βj ||hi(x̄i, u; pi, pj)||
(Lyapunov bounding condition)

≤ βj ||hi(x∗, u; pi, pj)||+ βjKi||x̄i − x∗||
(Local Lipschitz condition for hi at x∗)

≤ βj ||hi(x∗, u; pi, pj)||+ βjKiϵ

(Definition of ϵ-RoA for mode i)

≤ βj
αj
Vj(h(x

∗
i , u; pi, pj), pj) + βjKiϵ

(Lyapunov function bounding condition)

≤ βj
αj

(αj

βj
cj(pj)− αjKiϵ

)
+ βjKiϵ

(The condition in Eq. 2)

≤ cj(pj)

(8)

therefore we derive that Vj(xj , pj) ≤ cj(pj), which means xj is within the ϵ-RoA for mode j. So
the whole hybrid system is ϵ-stable according to Def. 3.

1

HYBRID SYSTEMS NEURAL CONTROL

Appendix B. Proof for Theo. 7

We consider the lower bound of ||pi − pk|| for every jump. We know that the Lyapunov value at the
entering state of mode k (denote the switching i→ k) is:

Vk(hi(xi, u; pi, pk), pk)

= Vk(h
+(xi, pi) + pi − pk, u; pk)

(definition of the special system)

≤ βk||h+(xi, pi) + pi − pk||
(Lyapunov bounding condition)

≤ βk||h+(xi, pi)||+ βk||pi − pk||
(Triangle inequality)

≤ βk||h+(x∗, pi)||+Kmβk||xi − x∗||+ βk||pi − pk||
(Local Lipschitz condition)

= Kmβk||xi − x∗||+ βk||pi − pk||
(Since h+(x∗, pi) = x∗)

≤ βkKmϵ+ βk||pi − pk||
(Definition of ϵ-RoA)

(9)

If the optimization is feasible and the optimal p exists, then from the assumption we know that
Vk(h

+(xi, pi) + pi − pk, pk) for the optimal p must be no larger than ck(pk) (zero the first loss in
Eq. 7). We are going to show that Vk(h+(xi, pi) + pi − pk, pk) must strictly equal to ck(pk). If
not, based on the continuity of the Vk, there must exist a p̃k around pk that can also zero the first
loss term in Eq. 7, and make ||p̃k − pj || ≤ ||pk − pj || which brings contradiction. Thus we have
Vk(h

+(xi, pi) + pi − pk, pk) = ck(pk), hence based on Eq. 9, we have:

||pi − pk|| ≥
ck(pk)

βk
−Kmϵ (10)

For each jump, the step length is lower bounded as shown in Eq. 10. Thus we have the number of
jumps is:

N ≤

⌈
||pj − pi||

min
m

cm
βm

−Kmϵ

⌉
(11)

Appendix C. Details for the simulation environments

C.1. Car tracking control

The goal here is to make sure the car can drive on the road under different road conditions. Given a
reference state (x, y, v, ψ)T for a Dubins car model, the state of the car model is (xe, ye, δ, ve, ψe, ψ̇e, β)

T ,
where xe, ye represent the Cartesian error, δ denotes the steering angle, ve denotes the velocity er-
ror, ψe and ψ̇e are the heading angle error and angular velocity error, and β is the slip angle. The

2

HYBRID SYSTEMS NEURAL CONTROL

dynamics are given by ẋ = f(x) + g(x)u, with

f(x) =

v cos(ψe)− vref + ωrefye
v sin(ψe)− ωrefxe

0
0

ψ̇e

C1(ψ̇e + ωref) + C2β + C3δ

C4(ψ̇e − ωref) + C5β + C6δ

(12)

with

C1 = − µm
vIx(lr+lf)

(l2fCSfglr + l2rCSrglf)

C2 =
µm

Ix(lr+lf)
(lrCSrglf − lfCSfglr)

C3 =
µm

Ix(lr+lf)
(lfCSfglr)

C4 =
µ

v2(lr+lf)
(CSrglf lr − CSfglrlf)− 1

C5 = − µ
v(lr+lf)

(CSrglf + CSfglr)

C6 =
µ

v(lr+lf)
(CSfglr)

(13)

and

g(x) =

0 0
0 0
1 0
0 1
0 0

 (14)

where u is the acceleration and the steering angle output, Ix, lr, lf , CSf , CSr, g are constant factors,
and µ is the road friction factor. More details can be found in (Althoff et al., 2017).

The road consists of multiple segments with different road conditions (different µ). Each seg-
ment belongs to a system mode with the configuration of reference waypoint (XE , Y E), reference
velocity vE and the friction factor µ. Different combinations of friction factor and the velocity will
give different traction force for the vehicle. At junctions of the two segments, the mode switching
causes the system state jump because of the change of the reference waypoint.

C.2. Pogobot navigation

The state of the pogobot is s = (x, ẋ, y, ẏ)T , where x, y are the 2d coordinate of the pogobot head,
and the ẋ, ẏ are the corresponding velocities. The movement of a pogobot involves two phases. In
the flight phase, the pogobot follows a ballistic dynamics ṡ = f(s) where:

f(s) =

ẋ
0
ẏ
−g

 (15)

here g is the gravity and the stance foot is determined by the pogobot pose θ (which can be controlled
instantly, since we assume a mass-less leg). In the stance phase, together with the stance foot

3

HYBRID SYSTEMS NEURAL CONTROL

position (xf , yf)
T , the dynamics becomes

ṡ =

ẋ

x−xf

L (k (L− l0) + F)
ẏ

y−yf
L (k (L− l0) + F)− g

 (16)

where L =
√
(x− xf)2 + (y − yf)2 denotes the length of the current pogobot, l0 denotes the orig-

inal length of the pogobot, k denotes the spring constant factor, and F and θ are the control inputs
(the stance force and the swing leg angle). Here we consider the apex-to-apex control strategy. We
first collect the simulation data to learn an apex-to-apex dynamic estimator. Then we use this dy-
namic estimator to train our Lyapunov function and controllers (as well as the RL-based methods).

C.3. Bipedal walker locomotion

The state of the Bipedal walker is s = (q, q̇)T where q = (q1, q2)
T , and q1 is the angle between the

normal vector of the ground and the stance leg, and the q2 is the angle between the stance leg and
the swing leg. q̇1 and q̇2 are the corresponding angular velocities. Within each mode, the continuous
dynamics of the system follows the manipulator equation:

ṡ =

[
q̇

D−1s (q)[−Cs(q, q̇)−Gs(q) +Bs(q)u]

]
(17)

where Ds, Cs, Gs, Bs are functions of q (and q̇), u is the control input (torque in this case), and a
state jump will occur when q2+2q1 = 0. HereB = (1, 0)T . We denote the leg massm, the original
leg length l with center of mass (CoM) location lc, the acceleration due to gravity g0, and the leg
inertial about leg CoM as I . Then the Ds(q) can be written as:

(Ds(q))1,1 = (l − lc)
2m+ I

(Ds(q))1,2 = ml(l − lc) cos(q2)− (l − lc)
2m− I

(Ds(q))2,2 = −2ml(l − lc) cos(q2)+

(2(l2c + l2)− 2lcl)m+ 2I

(18)

and the nonzero entries in Cs are:
(Cs(q, q̇))1,2 = −ml sin(q2)(l − lc)q̇1

(Cs(q2, q̇1))2,1 = −ml sin(q2)(l − lc)(q̇2 − q̇1)

(Cs(q2, q̇1))2,2 = −ml sin(q2)(l − lc)q̇2

(19)

and the nonzero entries in Gs are:{
(Gs(q1, q2))1 = mg0 sin(q2 − q1)(l − lc)

(Gs(q1, q2))2 = mg0((lc − l) sin(q2− q1)− sin(q1)(lc + l))
(20)

We recommend readers to (Choi et al., 2022) for more details.

4

HYBRID SYSTEMS NEURAL CONTROL

Appendix D. Implementation of our approach

As mentioned in Algorithm. 1, we first learn the control Lyapunov function (CLF) and the NN
controller, then we estimate the RoA, and finally we conduct online optimization for the planner in
the deployment phase.

For the CLF and controller learning phase (take the car tracking experiment as an example),
we uniformly sample 1000 states from an initial set, then at every epoch we sample trajectories for
100 time steps from the corresponding environment simulator given the NN controller, We use the
trajectories to train our CLF and NN controller. The CLF and the NN controller are 2-hidden-layer
NNs with 256 hidden units in each layer and ReLU activation in the intermediate layers. The last
layer of the controller uses TanH activation function to clip the output signal in a reasonable range.
We train the CLF and NN controller via the loss in Eq. 3. We use RMSprop gradient descent method
for the optimization with the learning rate of 10−4. We train CLF and controller for (at maximum)
1000 epochs, where inside each epoch the CLF and the controller will be updated for 500 steps. We
stop the training when the validation loss is not dropping significantly.

For the RoA Estimation phase, we use the CLF and the NN controller trained in the previous
step to generate 103 ∼ 104 trajectories in 100 time steps. Using CLF, we are able to find the largest
Lyapunov value c∗i for all the sampled initial states that having the exiting states within the ϵ-ball of
the equilibrium. We set the ϵ = 10−2. Then we train the RoA estimator using the loss in Eq. 4 for
50000 iterations, with RMSprop optimizer and learning rate of 10−4.

For the online planning (deployment) phase, we use the differentiable planner to plan for valid
configurations, and use the controller to ”follow” that configuration to maintain stability. For the
differentiable planner, at every mode switching instant, we first randomly generate 1000 configura-
tion hypothesis. Then we use RMSprop optimizer and conduct gradient descent with learning rate
of 0.05 for 5 steps. Then we pick the updated configuration hypothesis with the lowest loss.

D.1. Car tracking control

Before entering the i-th segment, we optimize for the configuration pi, which is the waypoint Wi =
(xrefi , yrefi) at the junction between the i-th segment and the i + 1-th segment, and the reference
velocity vrefi to track on the i-th segment. And at the i-th segment, we use the environment reference
waypoint (xEi+1, x

E
i+1) and the reference velocity vEi+1 for the next configuration. We make sure: (1)

the current entering state xi is within the RoA of the current system under the configuration of
pi = (Wi, v

ref
i). (2) the next entering state xi+1 is within the RoA of the system at segment i + 1

with configuration pi+1.

D.2. Pogobot navigation

Before entering the i-th segment, we optimize for the configuration pi, which is the reference apex
state height and reference apex state horizontal velocity at the next cycle (during the i-the segment).
We can find the last apex state x̃i before exiting the i-the segment using the dynamics estimator, and
make sure x̃i is within the RoA for the i+ 1-th segment under the reference apex state XE

i+1 given
from the environment.

5

HYBRID SYSTEMS NEURAL CONTROL

D.3. Bipedal walker locomotion

In this case, due to the difficulty to synthesize a control Lyapunov function, for the low-level con-
troller, we directly use the QP controller derived from (Choi et al., 2022) and the corresponding
Lyapuonv function is replaced by an RoA classifier, which outputs value <0.9 if the entering state
is within the RoA, and outputs value >1.1 for the rest case. During the planning, we use the dif-
ferentiable planner but with the loss Eq. 7 in to find the optimal configuration (in this case, the
reference gait).

Appendix E. Implementation of baseline approaches

Model-based reinforcement learning approaches: We compare with the Model-based Policy
Optimization (MBPO) method (Janner et al., 2019) implemented by an open-sourced library (Pineda
et al., 2021). Based on the hyper-parameters provided in the library configuration files, we then
searched for 3∼ 10 different hyper-parameters (learning rates, policy update frequency, etc) and
picked the one with the highest task-performance. We finalize the hyper-parameters and train the
MBPO policy under 3 different random seeds for 24 hours for each experiment.
Model-free reinforcement learning approaches: We modify the RL implementation code from
https://github.com/RITCHIEHuang/DeepRL_Algorithms, created the RL environ-
ments for each experiment, train each method with 3 random seeds for 24 hours each and take the
average performance in the testing. For the car experiment, we use the reward as a combination of
Root Mean Square Error (RMSE) penalty with the reference state and the valid rate of the trajectory
segments. For the pogobot experiment, we use the RMSE, the collision rate with the ceiling/floor,
and the distance to the goal as the rewards/penalties. For the Bipedal walker, we use the L2-distance
from the current state to the reference state on the target gait as the penalty to guide the controller
to converge to the target gait.
Model predictive control approaches: We use the CasADi (Andersson et al., 2019) to implement
non-linear optimization for each tasks. In each case, the system is simulated under some parameters
(controls) and the cost function is computed to optimize the control input. For the car experiment,
the cost function is the tracking error within the prediction horizon (T=20). For the pogobot exper-
iment, the cost function is a penalty term with collisions and a tracking error term to the horizontal
reference velocity. For the bipedal walker experiment, the cost function is the L2-norm between the
leg angle q1 after the switching and the target gait leg angle qref1 .
Linear quadratic control approaches: At each segment, we require the car to track the segment
endpoint and the designed reference velocity on the current segment given the friction factors. We
compute the error dynamics, and synthesize the controller by solving the Algebraic Ricatti Equation
similar as in (Dawson et al., 2022b).
Control Lyapunov function approaches: Followed by (Chang et al., 2019), we jointly train a
single NN Lyapunov function for all the system modes with a NN controller (that can also take
modes as inputs), with the same amount of training time used as for our approach.
CLF-QP approach: We directly use the QP controller derived from (Choi et al., 2022) for the
Bipedal walker comparison.
Hamilton Jacobian based approach: We directly use the computed result (the value function)
from (Choi et al., 2022) for the comparison for the target gait with the leg angle q1 = 0.13 rad.

6

https://github.com/RITCHIEHuang/DeepRL_Algorithms

HYBRID SYSTEMS NEURAL CONTROL

Appendix F. Ablation studies for our method in the car experiment

We first study the selection of hyperparameters in differentiable planning process. We tuned for
different possible values for the η and κ in the differential planning process. As shown in Table 1 and
Table 2, the performance is not sensitive to the hyperparameter selections. For all our experiments,
we choose η = 0.9 and κ = 10−2.

η κ Lane deviation RMSE Distance to goal
1.2 10−2 2.082 0.53018 0.117
1.0 10−2 2.100 0.523 0.166
0.9 10−2 2.087 0.514 0.117
0.8 10−2 2.084 0.514 0.117
0.5 10−2 2.121 0.538 0.167

Table 1: How different η will affect the performance in car experiment.

η κ Lane deviation RMSE Distance to goal
0.9 0.0 2.107 0.519 0.166
0.9 10−3 2.116 0.516 0.166
0.9 10−2 2.087 0.514 0.117
0.9 10−1 2.147 0.545 0.217
0.9 100 2.106 0.521 0.117

Table 2: How different κ will affect the performance in car experiment.

Our method uses Euler method to approximate the continuous dynamics, which might lead to
estimation error. Now we study how different approximations for continuous ODE will affect the
control performance. We choose different simulation time duration ∆t (from 10ms to 0.16ms) and
conduct the testing for our pretrained controller on the car benchmark. As shown in Table 3, the
performance is consistent across varied ∆t and all the metrics converges as ∆t → 0. As the time
duration ∆t→ 0, the estimation error will also decrease and the control performance will gradually
converge to the performance on the real continuous dynamics.

Simulation ∆t (ms) Lane deviation RMSE Distance to goal
10.0 2.114 0.533 0.166
5.0 2.125 0.522 0.216
2.5 2.118 0.528 0.216
1.25 2.106 0.531 0.166

0.625 2.104 0.531 0.166
0.3125 2.105 0.531 0.166
0.15625 2.104 0.531 0.166

Table 3: How different simulation ∆t will affect the performance in car experiment.

7

HYBRID SYSTEMS NEURAL CONTROL

Appendix G. Success rate for Bipedal walker locomotion under different initial
conditions

Figure 1: Walker success rate comparison under different initial states

For the bipedal walker experiment, we compare our approach with multiple RL-based ap-
proaches (A2C, DDPG, PPO, SAC, TD3, TRPO, VPG) and classic methods (QP, HJB) under dif-
ferent initial gait angles. As shown in Fig. 1, our approach can achieve similar-to-HJB performance,
outperforming all the RL-baselines and the QP baseline. The largest improvement (comparing to
RL methods) is from the ”small initial angles”. And our gain compared to QP-based methods is
mostly from the ”large initial angles”, which might because the large deviation from the target gait
angle makes the linearization more inaccurate, hence the QP-based method cannot achieve good
performance.

Appendix H. Visualization of learned RoA

From Fig. 2 to Fig. 26, we show the visualization of the learned RoA in all three experiments under
different configurations.

(a) x-y plane (b) v-δ plane (c) ψ-ψ̇ plane (d) ψ̇-β plane

Figure 2: Car experiment (friction µ = 1.0, reference speed v = 5m/s)

8

HYBRID SYSTEMS NEURAL CONTROL

(a) x-y plane (b) v-δ plane (c) ψ-ψ̇ plane (d) ψ̇-β plane

Figure 3: Car experiment (friction µ = 0.1, reference speed v = 5m/s)

(a) x-y plane (b) v-δ plane (c) ψ-ψ̇ plane (d) ψ̇-β plane

Figure 4: Car experiment (friction µ = 1.0, reference speed v = 10m/s)

(a) x-y plane (b) v-δ plane (c) ψ-ψ̇ plane (d) ψ̇-β plane

Figure 5: Car experiment (friction µ = 0.1, reference speed v = 10m/s)

(a) x-y plane (b) v-δ plane (c) ψ-ψ̇ plane (d) ψ̇-β plane

Figure 6: Car experiment (friction µ = 1.0, reference speed v = 20m/s)

9

HYBRID SYSTEMS NEURAL CONTROL

(a) x-y plane (b) v-δ plane (c) ψ-ψ̇ plane (d) ψ̇-β plane

Figure 7: Car experiment (friction µ = 0.1, reference speed v = 20m/s)

(a) x-y plane (b) v-δ plane (c) ψ-ψ̇ plane (d) ψ̇-β plane

Figure 8: Car experiment (friction µ = 1.0, reference speed v = 30m/s)

(a) x-y plane (b) v-δ plane (c) ψ-ψ̇ plane (d) ψ̇-β plane

Figure 9: Car experiment (friction µ = 0.1, reference speed v = 30m/s)

(a) apex velocity=1.0
m/s, apex height=
2.1 m

(b) apex velocity=1.0
m/s, apex height=
2.3 m

(c) apex velocity=1.0
m/s, apex height=
2.6 m

(d) apex velocity=1.0
m/s, apex height=
2.9 m

Figure 10: Pogobot experiment

10

HYBRID SYSTEMS NEURAL CONTROL

(a) apex velocity=1.0
m/s, apex height=
3.2 m

(b) apex velocity=1.3
m/s, apex height=
2.1 m

(c) apex velocity=1.3
m/s, apex height=
2.3 m

(d) apex velocity=1.3
m/s, apex height=
2.6 m

Figure 11: Pogobot experiment

(a) apex velocity=1.3
m/s, apex height=
2.9 m

(b) apex velocity=1.3
m/s, apex height=
3.2 m

(c) apex velocity=1.7
m/s, apex height=
2.1 m

(d) apex velocity=1.7
m/s, apex height=
2.3 m

Figure 12: Pogobot experiment

(a) apex velocity=1.7
m/s, apex height=
2.6 m

(b) apex velocity=1.7
m/s, apex height=
2.9 m

(c) apex velocity=1.7
m/s, apex height=
3.2 m

(d) apex velocity=2.0
m/s, apex height=
2.1 m

Figure 13: Pogobot experiment

11

HYBRID SYSTEMS NEURAL CONTROL

(a) apex velocity=2.0
m/s, apex height=
2.3 m

(b) apex velocity=2.0
m/s, apex height=
2.6 m

(c) apex velocity=2.0
m/s, apex height=
2.9 m

(d) apex velocity=2.0
m/s, apex height=
3.2 m

Figure 14: Pogobot experiment

(a) apex velocity=2.3
m/s, apex height=
2.1 m

(b) apex velocity=2.3
m/s, apex height=
2.3 m

(c) apex velocity=2.3
m/s, apex height=
2.6 m

(d) apex velocity=2.3
m/s, apex height=
2.9 m

Figure 15: Pogobot experiment

(a) apex velocity=2.3
m/s, apex height=
3.2 m

(b) apex velocity=2.7
m/s, apex height=
2.1 m

(c) apex velocity=2.7
m/s, apex height=
2.3 m

(d) apex velocity=2.7
m/s, apex height=
2.6 m

Figure 16: Pogobot experiment

12

HYBRID SYSTEMS NEURAL CONTROL

(a) apex velocity=2.7
m/s, apex height=
2.9 m

(b) apex velocity=2.7
m/s, apex height=
3.2 m

(c) apex velocity=3.0
m/s, apex height=
2.1 m

(d) apex velocity=3.0
m/s, apex height=
2.3 m

Figure 17: Pogobot experiment

(a) apex velocity=3.0
m/s, apex height=
2.6 m

(b) apex velocity=3.0
m/s, apex height=
2.9 m

(c) apex velocity=3.0
m/s, apex height=
3.2 m

(d) apex velocity=3.3
m/s, apex height=
2.1 m

Figure 18: Pogobot experiment

(a) apex velocity=3.3
m/s, apex height=
2.3 m

(b) apex velocity=3.3
m/s, apex height=
2.6 m

(c) apex velocity=3.3
m/s, apex height=
2.9 m

(d) apex velocity=3.3
m/s, apex height=
3.2 m

Figure 19: Pogobot experiment

13

HYBRID SYSTEMS NEURAL CONTROL

(a) apex velocity=3.7
m/s, apex height=
2.1 m

(b) apex velocity=3.7
m/s, apex height=
2.3 m

(c) apex velocity=3.7
m/s, apex height=
2.6 m

(d) apex velocity=3.7
m/s, apex height=
2.9 m

Figure 20: Pogobot experiment

(a) apex velocity=3.7
m/s, apex height=
3.2 m

(b) apex velocity=4.0
m/s, apex height=
2.1 m

(c) apex velocity=4.0
m/s, apex height=
2.3 m

(d) apex velocity=4.0
m/s, apex height=
2.6 m

Figure 21: Pogobot experiment

(a) x-y plane (b) q2-q̇1 plane (c) q̇1-q̇2 plane (d) q2-q̇2 plane

Figure 22: Bipedal walker experiment (reference gait qref1 =0.05rad)

14

HYBRID SYSTEMS NEURAL CONTROL

(a) x-y plane (b) q2-q̇1 plane (c) q̇1-q̇2 plane (d) q2-q̇2 plane

Figure 23: Bipedal walker experiment (reference gait qref1 =0.08rad)

(a) x-y plane (b) q2-q̇1 plane (c) q̇1-q̇2 plane (d) q2-q̇2 plane

Figure 24: Bipedal walker experiment (reference gait qref1 =0.10rad)

(a) x-y plane (b) q2-q̇1 plane (c) q̇1-q̇2 plane (d) q2-q̇2 plane

Figure 25: Bipedal walker experiment (reference gait qref1 =0.13rad)

15

HYBRID SYSTEMS NEURAL CONTROL

(a) x-y plane (b) q2-q̇1 plane (c) q̇1-q̇2 plane (d) q2-q̇2 plane

Figure 26: Bipedal walker experiment (reference gait qref1 =0.18rad)

16

HYBRID SYSTEMS NEURAL CONTROL

Appendix I. Visualization for the simulations

From Fig. 27 to Fig. 62, we visualize simulation results for all three experiments under different
configurations.

(a) Trial 00 (b) Trial 01 (c) Trial 02 (d) Trial 03 (e) Trial 04

Figure 27: Car simulation comparisons

(a) Trial 05 (b) Trial 06 (c) Trial 07 (d) Trial 08 (e) Trial 09

Figure 28: Car simulation comparisons

(a) Trial 10 (b) Trial 11 (c) Trial 12 (d) Trial 13 (e) Trial 14

Figure 29: Car simulation comparisons

(a) Trial 15 (b) Trial 16 (c) Trial 17 (d) Trial 18 (e) Trial 19

Figure 30: Car simulation comparisons

17

HYBRID SYSTEMS NEURAL CONTROL

(a) Trial 20 (b) Trial 21 (c) Trial 22 (d) Trial 23 (e) Trial 24

Figure 31: Car simulation comparisons

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 32: Pogobot simulation comparisons (trial 04)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 33: Pogobot simulation comparisons (trial 05)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 34: Pogobot simulation comparisons (trial 06)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 35: Pogobot simulation comparisons (trial 07)

18

HYBRID SYSTEMS NEURAL CONTROL

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 36: Pogobot simulation comparisons (trial 08)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 37: Pogobot simulation comparisons (trial 09)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 38: Pogobot simulation comparisons (trial 10)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 39: Pogobot simulation comparisons (trial 11)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 40: Pogobot simulation comparisons (trial 12)

19

HYBRID SYSTEMS NEURAL CONTROL

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 41: Pogobot simulation comparisons (trial 13)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 42: Pogobot simulation comparisons (trial 14)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 43: Pogobot simulation comparisons (trial 15)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 44: Pogobot simulation comparisons (trial 16)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 45: Pogobot simulation comparisons (trial 17)

20

HYBRID SYSTEMS NEURAL CONTROL

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 46: Pogobot simulation comparisons (trial 18)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 47: Pogobot simulation comparisons (trial 19)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 48: Pogobot simulation comparisons (trial 20)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 49: Pogobot simulation comparisons (trial 21)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 50: Pogobot simulation comparisons (trial 22)

21

HYBRID SYSTEMS NEURAL CONTROL

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 51: Pogobot simulation comparisons (trial 23)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 52: Pogobot simulation comparisons (trial 24)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 53: Pogobot simulation comparisons (trial 25)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 54: Pogobot simulation comparisons (trial 26)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 55: Pogobot simulation comparisons (trial 27)

22

HYBRID SYSTEMS NEURAL CONTROL

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) Ours

Figure 56: Pogobot simulation comparisons (trial 28)

(a) RL-SAC (b) RL-PPO (c) RL-
DDPG

(d) MPC (e) QP (f) HJB (g) Ours

Figure 57: Bipedal walker simulation comparisons (same target angle)

(a) RL-SAC (b) RL-PPO (c) RL-
DDPG

(d) MPC (e) QP (f) HJB (g) Ours

Figure 58: Bipedal walker simulation comparisons (same target angle)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) QP (f) Ours

Figure 59: Bipedal walker simulation comparisons (different target angles)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) QP (f) Ours

Figure 60: Bipedal walker simulation comparisons (different target angles)

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) QP (f) Ours

Figure 61: Bipedal walker simulation comparisons (different target angles)

23

HYBRID SYSTEMS NEURAL CONTROL

(a) RL-SAC (b) RL-PPO (c) RL-DDPG (d) MPC (e) QP (f) Ours

Figure 62: Bipedal walker simulation comparisons (different target angles)

24

	Introduction
	Related Work
	Problem Formulation
	Methodology
	Learning neural Lyapunov functions and controllers
	Learning neural RoA estimator
	Differentiable configuration planner

	Experiments
	Car control under different road conditions
	Pogobot navigation
	Bipedal walker locomotion
	Limitations

	Conclusion
	Proof for Theo. 6
	Proof for Theo. 7
	Details for the simulation environments
	Car tracking control
	Pogobot navigation
	Bipedal walker locomotion

	Implementation of our approach
	Car tracking control
	Pogobot navigation
	Bipedal walker locomotion

	Implementation of baseline approaches
	Ablation studies for our method in the car experiment
	Success rate for Bipedal walker locomotion under different initial conditions
	Visualization of learned RoA
	Visualization for the simulations

